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6 November 2014 SeniorMathematical Challenge 2014 Solutions and investigations

1. What is 98 × 102?

A 200 B 9016 C 9996 D 998 E 99 996

Solution

C There are, of course, several ways to evaluate the product. In the absence of a calculator
the method which involves least effort is to exploit the difference of two squares identity,
(x − y)(x + y) = x2 − y2. This gives

98 × 102 = (100 − 2)(100 + 2) = 1002 − 22 = 10 000 − 4 = 9996.

Note that there are two useful checks that could be used here.

(a) Because 8 × 2 = 16, the units digit of 98 × 102 is 6. This rules out options A and D.

(b) Because 98 and 102 are each close to 100, their product is close to 100× 100 = 10 000.
This rules out all the options other than C.

For investigation

1.1 What is 998 × 1002?

2. The diagram shows 6 regions. Each of the regions is to be painted a
single colour, so that no two regions sharing an edge have the same
colour.

What is the smallest number of colours required?

A 2 B 3 C 4 D 5 E 6

Solution

B The figure on the left below shows that with just three colours we can paint the six regions
so that regions sharing an edge are painted different colours. This shows that at most three
colours are needed.

Since each pair of the regions labelled P, Q and R in the figure on the right shares an edge,
these three regions must be painted different colours. So at least three colours are needed.

Therefore three is the smallest number of colours required.

P

Q

R
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3. December 31st 1997 was a Wednesday.

How many Wednesdays were there in 1997?

A 12 B 51 C 52 D 53 E 365

Solution

D As 1997 was not a leap year, there were 365 days in 1997. Since 365 = 52 × 7 + 1, the
year 1997 was made up of 52 periods of 7 days, together with December 31st which was
a Wednesday. So each of the 52 preceding periods of 7 days began with a Wednesday.
Therefore there were 53 Wednesdays in 1997.

4. After I had spent 1
5 of my money and then spent 1

4 of what was left, I had £15 remaining.

How much did I start with?

A £25 B £75 C £100 D £135 E £300

Solution

A Suppose that I started with £x. After spending 1
5 of my money, I was left with 4

5 of what I
started with. After spending 1

4 of what was left, there remained 3
4 × 4

5 =
3
5 of what I started

with. Since £15 remained, 3
5 x = 15. Therefore x = 5

3 × 15 = 25. Therefore, I started with
£25.

5. How many integers between 1 and 2014 are multiples of both 20 and 14?

A 7 B 10 C 14 D 20 E 28

Solution

C An integer is a multiple of both 20 and 14 if, and only if, it is a multiple of their least
common multiple. The least common multiple of 20 and 14 is 140. The integers between 1
and 2014 that are multiples of 140 are 140, 280, 420, 560, . . . and so on. So the number of
integers between 1 and 2014 that are multiples of 140 and hence multiples of both 14 and
20 is the integer part of 2014

140 . Now

2014
140

= 14 +
54
140
,

and it follows that there are 14 integers between 1 and 2014 that are multiples of both 20
and 14.

For investigation

5.1 How many integers are there between 1 and 1000 that are multiples of both 6 and 21?

5.2 How many integers are there between 1 and 106 that are multiples of 2, 3, 5 and 7?

5.3 Show that for all positive integers a and b, an integer is a multiple of both a and b if, and
only if, it is a multiple of the least common multiple of a and b.

24 October 2014 © UKMT November 2014 3
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6. In the addition sum shown, each of the letters T , H , I and S represents a
non-zero digit.

What is T + H + I + S?

A 34 B 22 C 15 D 9 E 7

SIHT
SI+

4102

Solution

B The sum of ‘T HIS’ and ‘IS’ has 4 in the units place. Hence S is either 2 or 7. The digit 1
in the tens column of the sum is odd. If this digit just came from I + I, it would be even. So
there is a carry from the units column to the tens column. Therefore S is 7.

Because I is non-zero, it follows that I is 5. Hence there is a carry from the tens column to
the hundreds column. Therefore H is 9, and so T is 1.

Therefore T + H + I + S = 1 + 9 + 5 + 7 = 22.

For investigation

6.1 Are there any other solutions if the restriction that T , H , I and S are non-zero is dropped?

7. According to recent research, global sea levels could rise 36.8 cm by the year 2100 as a
result of melting ice.

Roughly how many millimetres is that per year?

A 10 B 4 C 1 D 0.4 E 0.1

Solution

B The year 2100 is 2100 − 2015 = 85 years away, and 36.8 cm is 368 millimetres. Now
368
85

is approximately
360
90

, that is, 4.

Remark

The key idea here is to replace the numbers 368 and 85 by approximations, say, a and b, so that

the fraction
a
b

is easy to evaluate and is sufficiently close to
368
85

. Other choices are possible.

For investigation

7.1 Find without using a calculator approximations to the values of the following fractions

(a)
4783
77

, (b)
34 689

683
, (c)

725 546
239

.

7.2 The mean distance of the earth from the sun is 1.496 × 108 km. The velocity of light is
299 792 km per second. Without using a calculator estimate the number of minutes it
takes light from the sun to reach the earth.

24 October 2014 © UKMT November 2014 4
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8. The diagram shows four sets of parallel lines, containing 2, 3, 4
and 5 lines respectively.

How many points of intersection are there?

A 54 B 63 C 71 D 95 E 196

Solution

C When a set of p parallel lines intersects a set of q parallel lines, each line of the first set meets
each line of the second set and so there are p× q points of intersection. Here there are 4 sets
of parallel lines, and there are 6 pairs of these sets that intersect each other. The total number
of intersections is 2×3+2×4+2×5+3×4+3×5+4×5 = 6+8+10+12+15+20 = 71.

9. Which of the following is divisible by 9?

A 102014 + 5 B 102014 + 6 C 102014 + 7 D 102014 + 8
E 102014 + 9

Solution

D When written in standard notation, the number 102014 − 1 consists of a string of 2014
consecutive occurrences of the digit 9. It follows that 102014 − 1 is divisible by 9.

Another way to see this is to use the identity xn − 1 = (x − 1)(xn−1 + xn−2 + · · · + x + 1). It
follows that xn − 1 is divisible by x − 1. Hence, putting x = 10 and n = 2014, we see that
102014 − 1 is divisible by 9. For a third method see Problem 9.3.

Therefore when 102014 is divided by 9, the remainder is 1. That is, 102014 = 9n + 1 for some
integer n.

It follows that 102014 + 5 = 9n + 6, 102014 + 6 = 9n + 7, 102014 + 7 = 9n + 8, 102014 + 8 =
9n+ 9 = 9(n+ 1) and 102014 + 9 = 9n+ 10 = 9(n+ 1) + 1. From this we see that 102014 + 8
is divisible by 9, but no other number given as an option is divisible by 9.

For investigation

9.1 For which value of n, with 1 ≤ n ≤ 9, is 102015 + n divisible by 9?

9.2 What is the remainder when 102014 is divided by 11?

9.3 Another method is to use the fact that:

When a positive integer is divided by 9 the remainder is the same as when the sum of
its digits is divided by 9.

Note that it follows that:

A positive integer is divisible by 9 if, and only if, the sum of its digits is divisible by 9.

(a) Use these facts to answer Question 9.

(b) Explain why the facts above are correct.

24 October 2014 © UKMT November 2014 5
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10. A rectangle has area 120 cm2 and perimeter 46 cm.

Which of the following is the length of each of the diagonals?

A 15 cm B 16 cm C 17 cm D 18 cm E 19 cm

Solution

C Suppose that the length of the rectangle is a cm and its width is b cm. The rectangle has
area 120 cm2, and therefore ab = 120. The rectangle has perimeter 46 cm, and therefore
2a + 2b = 46. Hence a + b = 23. By Pythagoras’ Theorem, the length of the diagonal, in
centimetres, is

√
a2 + b2. Now

a2 + b2 = (a + b)2 − 2ab = 232 − 240 = 529 − 240 = 289 = 172.

It follows that
√

a2 + b2 = 17, and hence that each diagonal has length 17 cm.

Remarks

Notice that in the above solution we did not need to work out the values of a and b separately in
order to evaluate a2 + b2 because we are able to express a2 + b2 in terms of a + b and ab.

We can generalize this. A polynomial in more than one unknown is said to be a symmetric
polynomial if, however, we swap round the unknowns, the resulting polynomial is equivalent to
the one we started with. For example, the polynomial a + b is symmetric because if we swap
round a and b we get the polynomial b + a, which is equivalent to the polynomial a + b that we
started with.

Another example is the polynomial a2b + ab2. If we swap round a and b in this polynomial we
obtain the polynomial b2a + ba2, which is equivalent to the polynomial we started with.

We can have symmetric polynomials with more than two unknowns. For example, the polynomial
ab + bc + ca is a symmetric polynomial in the three unknowns a, b and c. If, for example, in
this polynomial we replace a by c, c by b and b by a, we obtain the polynomial ca + ab + bc
which is equivalent to the original polynomial.

The elementary symmetric polynomials in the two unknowns a and b are the polynomials a + b
and ab. The Fundamental Theorem on Symmetric Polynomials says that every other symmetric
polynomial in the two unknowns a and b and with integer coefficients can be obtained from
these elementary symmetric polynomials just using addition, subtraction and multiplication.

For example, in the solution to Question 10 we obtained a2 + b2 by multiplying the elementary
symmetric polynomial a + b by itself to get (a + b)2, and then subtracting the elementary
symmetric polynomial ab twice, so that we ended up with (a + b)2 − 2ab.

The elementary symmetric polynomials in the three unknowns a, b and c are a+b+c, ab+bc+ca
and abc. The Fundamental Theorem also tells us that every symmetric polynomial in the three
unknowns a, b and c with integer coefficients can be obtained from the elementary ones using
just addition, subtraction and multiplication. It can be generalized to cover the case of symmetric
polynomials in any finite number of unknowns.

You are asked to explore these ideas in the following problems, after first being asked to find the
values of a and b in Question 10.

24 October 2014 © UKMT November 2014 6
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For investigation

10.1 Find the length and width of the rectangle in Question 10.

10.2 Which of the following are symmetric polynomials?

(a) a5 + b5,

(b) 2a2b + 3ab2,

(c) a2b + b2c + c2a,

(d) a4 + b4 + c4.

10.3 Express the following symmetric polynomials in terms of the elementary symmetric
polynomials a + b and ab.

(a) a2b + ab2,

(b) a3 + b3,

(c) a4 + b4.

10.4 You are given that a + b = 7 and ab = 5. Evaluate a3 + b3.

10.5 Express the symmetric polynomial a3 + b3 + c3 in terms of the elementary symmetric
polynomials a + b + c, ab + bc + ca and abc.

10.6 Find a proof of the Fundamental Theorem on Symmetric Polynomials.

11. A Mersenne prime is a prime of the form 2p − 1, where p is also a prime.

One of the following is not a Mersenne prime. Which one is it?

A 22 − 1 B 23 − 1 C 25 − 1 D 27 − 1 E 211 − 1

Solution

E The options have the form 2p − 1, for p = 2, 3, 5, 7 and 11, respectively. All these values
of p are primes. So we need to find out which of the options is not itself a prime.

We see that 22 − 1 = 3, 23 − 1 = 7, 25 − 1 = 31 and 27 − 1 = 127 are all prime. So it must
be that the remaining option, 211 − 1, is not prime.

In the context of the SMC that is all you need do, but for a complete solution we need to
check that 211 − 1 is indeed not prime. This is not immediately obvious, but you can check
that 211 − 1 = 2047 = 23 × 89 and so is not prime.

24 October 2014 © UKMT November 2014 7
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For investigation

11.1 Show that if p is a positive integer which is not prime, then 2p − 1 is not a prime number.

Hint: Let p = ab, where a and b are integers each greater than 1. Then 2p = 2ab − 1 =
(2a)b = xb − 1, where x = 2a.

Note that this shows that for 2p − 1 to be prime, it is necessary for p to be a prime number.
The fact that 211 − 1 is not prime shows that this is not a sufficient condition.

11.2 One reason for being interested in Mersenne primes is that if 2p − 1 is a Mersenne prime,
then the number 2p−1(2p − 1) is a perfect number. A positive integer n is said to be a
perfect number if it is equal to the sum of all its divisors, including 1, but not n itself.
For example, as 22 − 1 is a Mersenne prime, the number 22−1(22 − 1) = 2 × 3 = 6 is
perfect. This is easy to check. The divisors of 6, other than 6 itself, are 1, 2 and 3, and
1 + 2 + 3 = 6.

23 − 1 and 25 − 1 are both Mersenne primes. Check by direct calculations that both
23−1(23 − 1) and 25−1(25 − 1), that is, 28 and 496, are perfect numbers.

11.3 Show that if 2p − 1 is a prime number, then 2p−1(2p − 1) is a perfect number.

11.4 Show that if n is an even number that is perfect, then there is a Mersenne prime 2p − 1
such that n = 2p−1(2p − 1).

Hint: First, it is useful to introduce the standard notation σ(n) for the sum of all the
divisors of n, including n itself. Since this sum includes the divisor n, a positive integer,
n is perfect if, and only if, σ(n) = 2n.

Second, use the fact that each even positive integer can be written in the form 2a (2b − 1),
where a and b are positive integers.

(a) Now show that σ(2a (2b − 1)) = (1 + 2 + 22 + · · · + 2a)σ(2b − 1)
= (2a+1 − 1)σ(2b − 1).

(b) Deduce that 2a (2b−1) is perfect if, and only if, (2a+1−1)σ(2b−1) = 2a+1(2b−1).

(c) Deduce that b = 2a and 2a+1 − 1 is prime.

Remarks

The proof that if 2p − 1 is prime, then 2p−1(2p − 1) is a perfect number is to be found in Euclid’s
Elements (Book 9, Proposition 36).

Marin Mersenne (1588–1648) was a French monk. At a time long before research in mathematics
was published in journals, and before the internet, he played an important role by corresponding
with mathematicians and communicating their results. He tried to find a general formula for
prime numbers, and gave a list of prime numbers p for which he thought 2p − 1 was a prime, but
he made a number of errors.

At the time of writing (October 2014), there are 48 known Mersenne primes of which the
largest is 257 865 161 − 1. So there are 48 known even perfect numbers of which the largest is
257 865 160(257 865 161 − 1). It is not known whether there are infinitely many Mersenne primes,
nor is it known whether there are any odd perfect numbers.

24 October 2014 © UKMT November 2014 8
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12. Karen has three times the number of cherries that Lionel has, and twice the number of
cherries that Michael has. Michael has seven more cherries than Lionel.

How many cherries do Karen, Lionel and Michael have altogether?

A 12 B 42 C 60 D 77 E 84

Solution

D Suppose that Karen has x cherries. Then Lionel has 1
3 x cherries and Michael has 1

2 x cherries.
Michael has seven more cherries than Lionel and so 1

2 x − 1
3 x = 7. Therefore

( 1
2 − 1

3
)
x = 7,

that is,
( 3−2

6
)
x = 7, and hence 1

6 x = 7. Therefore x = 42. It follows that Karen has 42
cherries, Lionel has 14 cherries and Michael has 21 cherries. So they have 42+14+21 = 77
cherries between them.

For investigation

12.1 The fractions in this solution could be avoided by supposing that Karen has 6x cherries.
Rework the solution using this assumption.

12.2 Find a formula for the total number of cherries they have between them if Karen has p
times the number of cherries that Lionel has, and q times the number of cherries that
Michael has, and Michael has c more cherries than Lionel.

24 October 2014 © UKMT November 2014 9
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13. Each of the five nets P, Q, R, S and T is made from six squares. Both sides of each square
have the same colour. Net P is folded to form a cube.

P Q R S T

How many of the nets Q, R, S and T can be folded to produce a cube that looks the same
as that produced by P?

A 0 B 1 C 2 D 3 E 4

Solution

E Each net folds to make a cube with three white and three grey faces. There are two
possibilities for such a cube. Either the three grey faces meet at a common vertex, or they
do not have a vertex in common.

If the three grey faces meet at a common vertex, the cube looks like the one on the left
below, where the top, back and right-hand faces are grey.

If the grey faces do not have a vertex in common then the cube looks like the one on the
right below, where the top, left-hand and right-hand faces are grey.

It the nets are folded, the nets P, Q, R, S and T make cubes where the three grey faces do
not have a vertex in common. So they all form a cube which looks like the cube on the
right above. Hence all four of Q, R, S and T fold to make a cube that looks the same as that
produced by P.

24 October 2014 © UKMT November 2014 10
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14. Given that
3x + y

x − 3y
= −1, what is the value of

x + 3y
3x − y

?

A −1 B 2 C 4 D 5 E 7

Solution

E From
3x + y

x − 3y
= −1, it follows that 3x + y = −(x − 3y), that is, 3x + y = −x + 3y. Hence

4x = 2y and so y = 2x. Therefore

x + 3y
3x − y

=
x + 6x

3x − 2x

=
7x
x

= 7.

For investigation

14.1 It is, in fact, possible to evaluate
x + 3y
3x − y

directly from the given value for
3x + y

x − 3y
without

the need to find y in terms of x. However this involves rather more work!

(a) Show that

x + 3y
3x − y

=

3
(3x + y

x − 3y

)
− 4

4
(3x + y

x − 3y

)
+ 3
.

(b) Use the result of part (a) to verify that
x + 3y
3x − y

= 7.

14.2 (a) Find values for a, b, c and d so that

a
(3x + y

x − 3y

)
+ b

c
(3x + y

x − 3y

)
+ d
=

x + y

x − y
.

(b) Use the result of part (a) to evaluate
x + y

x − y
, given that

3x + y

x − 3y
= 5.

24 October 2014 © UKMT November 2014 11
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15. The figure shown alongside is made from seven small squares. Some
of these squares are to be shaded so that:

(i) at least two squares are shaded;
(ii) two squares meeting along an edge or at a corner are not both

shaded.

How many ways are there to do this?

A 4 B 8 C 10 D 14 E 18

Solution

C We solve this problem by listing all the shadings which satisfy the given
conditions. It helps to label the squares as shown. We can then indicate
a particular shading by specifying the squares that have been shaded.
For example, by “the shading PST” we mean the shading in which the
squares labelled P, S and T are those that are shaded.

P

Q R S

T U V

We say that a shading is correct if it satisfies the conditions (i) and (ii) specified in the
question.

To ensure that we get the right answer we need to list the correct shadings in a systematic
way so that we can be sure that only correct shadings are included in our list, and that every
correct shading occurs exactly once.

We do this by considering the squares in the alphabetical order of their labels.

So we first consider correct shadings in which P is shaded. We see that if P is shaded then
Q and R cannot be shaded. If, in addition to P, we shade S, then the only other square that
could be shaded is T . So there are just two correct shadings in which P and S are shaded,
namely PS and PST .

If P is shaded but S is not shaded, then the only possibilities are to to shade just T , or T and
V , or just U , or just V . So there are four correct shadings PT , PTV , PU and PV in which P
is shaded but S is not shaded.

Next we consider the cases where P is not shaded. If then Q is shaded, we cannot shade R,
Tor U and the only possibility is to shade just one of S and V . So we get two more correct
shadings QS and QV .

If we continue in this way we obtain the following list of all the correct shadings: PS, PST ,
PT , PTV , PU, PV , QS, QV , ST , TV . We see that there are 10 of them.

24 October 2014 © UKMT November 2014 12
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16. The diagram shows a rectangle measuring 6 × 12 and a circle.

The two shorter sides of the rectangle are tangents to the circle.
The circle and rectangle have the same centre.

The region that lies inside both the rectangle and the circle is
shaded. What is its area?

A 12π + 18
√

3 B 24π − 3
√

3 C 18π − 8
√

3
D 18π + 12

√
3 E 24π + 18

√
3

Solution

A We let O be the centre of the circle and we let P, Q,R and S be the points where the rectangle
meets the circle, as shown.

The shaded region is made up of the two triangles, POS and QOR, and the two sectors
OPQ and ORS of the circle. We calculate their areas separately.

P

Q R

S

T

O
T

O

P

We first note that, as the shorter sides of the rectangle are tangents to the circle, the radius of
the circle is half the length of the rectangle. So the circle has radius 6.

Let T be the point where the perpendicular from O to PS meets PS. In the right-angled
triangle POT , the hypotenuse OP has length 6, as it is a radius of the circle, and OT , being
half the width of the rectangle, has length 3. Therefore by Pythagoras’ Theorem the length
of PT is

√
62 − 32 =

√
27 = 3

√
3. Similarly T S = 3

√
3. Therefore PS has length 6

√
3

and the area of triangle OPS is 1
2 (base × height) = 1

2 (6
√

3 × 3) = 9
√

3. Similarly, triangle
QOR has area 9

√
3.

Since OT is half the length of OP, the triangle OT P is half of an equilateral triangle. It
follows that ∠POT = 60°. Similarly ∠SOT = 60°. Because the angles at O on the straight
line QOS have sum 180°, it follows that, also, ∠POQ = 60°.

Therefore the area of the sector OPQ is one-sixth that of the circle. The circle has radius
6, and hence its area is π(62), that is, 36π. So the area of the sector OPQ is 1

6 (36π) = 6π.
Similarly, the sector ORS has area 6π.

Therefore the area that is shaded is (2 × 9
√

3) + (2 × 6π) = 18
√

3 + 12π.

24 October 2014 © UKMT November 2014 13
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17. An oil tanker is 100 km due north of a cruise liner. The tanker sails SE at a speed of 20
kilometres per hour and the liner sails NW at a speed of 10 kilometres per hour.

What is the shortest distance between the two boats during the subsequent motion?

A 100 km B 80 km C 50
√

2 km D 60 km E 331
3 km

Solution

C Let O and C be the initial positions of the oil tanker and
the cruise liner, and let P and D be their positions when
they are their shortest distance apart.

Because the oil tanker is sailing SE, ∠COP = 45°. Be-
cause the cruise liner is sailing NW, ∠DCO = 45°.

Because the alternate angles, ∠COP and ∠DCO, are
equal, CD is parallel to OP. Therefore PD is perpendic-
ular to the paths of both ships, and hence has the same
length as the perpendicular, CQ, from C to the path of
the oil tanker. Let this length be x km.

O

C

P
Q

D

In the triangle OQC, ∠OQC is a right angle and ∠COQ = 45°. It follows that the triangle
OQC is a right-angled isosceles triangle. So the length of OQ is the same as that of CQ,
namely x km. The tanker is initially 100 km north of the liner and therefore OC has length
100 km.

By Pythagoras’ Theorem applied to this triangle, x2 + x2 = 1002. So 2x2 = 1002. It follows
that

x =
100√

2
= 50

√
2.

Alternatively, we could use trigonometry, to give x = 100 cos 45° = 100 × 1√
2
= 50

√
2.

Remark

Note that in order to solve this problem we did not need to locate the positions of the ships when
they are at their shortest distance apart. The speeds of the ships are not relevant. These speeds
affect the time and the positions of the ships when they are at their closest distance apart, but not
what this distance is.

For investigation

17.1 Assume that the two ships set off at the same time. How far will each of them have
travelled when they are at their shortest distance apart?

17.2 Assume that the two ships set off at the same time. How long does it take them to reach
the positions at which they are at their shortest distance apart?

17.3 The question and the solution both implicitly assume that the ships are on a flat sea to
which the standard facts of two-dimensional Euclidean geometry are applicable, rather
than on the almost spherical surface of the Earth. How good an approximation to the
actual shortest distance do you think this gives?

24 October 2014 © UKMT November 2014 14
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18. Beatrix decorates the faces of a cube, whose edges have length 2. For each
face, she either leaves it blank, or draws a single straight line on it. Every
line joins the midpoints of two edges, either opposite or adjacent, as shown.

What is the length of the longest unbroken line that Beatrix can draw on the
cube?

A 8 B 4 + 4
√

2 C 6 + 3
√

2 D 8 + 2
√

2
E 12

Solution

D Since a cube has 6 faces, no unbroken path can contain
more than 6 lines. The diagram shows an unbroken path
PQRSTUV made up of 6 lines: 4 lines joining midpoints
of opposite edges, each of length 2; and 2 lines joining
midpoints of adjacent edges, each of length

√
2. So the

path shown has length 4 × 2 + 2 × √2 = 8 + 2
√

2.

To complete the solution, we need to show that it is not
possible to draw a longer unbroken line on the cube.

P

Q

R

ST

U

V

W

It will be convenient to call a line joining the midpoint of opposite edges an o-line, and a
line joining the midpoints of adjacent edges an a-line.

We cannot have a path made up of 6 o-lines, because 4 consecutive o-lines form a closed
path which cannot be extended.

So to have a path whose length is greater than 8 + 2
√

2 (which consists of 4 o-lines and 2
a-lines) we would need to have 5 o-lines and 1 a-line. A path of this form, if it exists, as it
includes just one a-line, must include at least three consecutive o-lines, and, by the earlier
remark, it cannot include 4 consecutive o-lines.

Now consider a path made up of 3 consecutive o-lines. For example, consider the path
PQRW . As we have seen, if we extend this path with a fourth o-line it becomes closed
and we could not continue it any further. So to obtain a path with 5 o-lines and 1 a-line we
would need to continue it with an a-line, for example WT , to make the path PQRWT . But
now the only line that could be added to this path is either an a-line or an o-line on the top
face. We could not add a sixth line to this path. This would also be true if we extended the
path PQRW by adding the a-line UP.

So there is no path made up of 5 o-lines and 1 a-line.

Hence the longest path that can be drawn has length 8 + 2
√

2.
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19. The diagram shows a quadrant of radius 2, and two touching
semicircles. The larger semicircle has radius 1. What is the
radius of the smaller semicircle?

A
π

6
B

√
3

2
C

1
2

D
1√
3

E
2
3

Solution

E Let the smaller semicircle have radius x. Let O be the
centre of the larger semicircle and let P be the centre
of the smaller semicircle. Let Q be the centre of the
quadrant, let R be the point where the semicircles meet,
and let S and T be the points shown in the diagram.

Because OQ is a radius of the larger semicircle, it has
length 1. As PS is a radius of the smaller circle it has
length x, and so PQ has length 2 − x. Since the two
semicircles touch at R, the points O, R and P are in a
straight line and hence OP has length 1 + x.

TOQ

P

S

R
2 − x

x

Therefore, by Pythagoras’ Theorem applied to the right-angled triangle OQP,

(1 + x)2 = 12 + (2 − x)2.

This equation can be expanded to give

1 + 2x + x2 = 1 +
(
4 − 4x + x2) .

It follows that
6x = 4,

and therefore

x =
2
3
.

Remark

Note the useful check: with x = 2
3 , the side lengths of the triangle QOP are given by OQ = 1,

QP = 4
3 and OP = 5

3 . These are in the ratio 3 : 4 : 5, which (using the converse of Pythagoras’
Theorem) confirms that ∠OQP is a right angle.
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20. The diagram shows six squares with sides of length 2 placed edge-to-
edge.

What is the radius of the smallest circle containing all six squares?

A 2
√

5 B 2
√

6 C 5 D
√

26 E 2
√

7

Solution

A We let O, X , Y and Z be the points shown in the figure on the
right. By Pythagoras’ Theorem the points X , Y and Z are all at
a distance 2

√
5 from O. It is straightforward to check that the

circle with centre O and radius 2
√

5 contains all six squares.
So the radius of the smallest circle containing all six squares is
at most 2

√
5.

In the context of the SMC it is sufficient to note that 2
√

5 is
the smallest of the given options, and so must be the correct
answer.

X

Y Z

O

However, to give a complete mathematical solution we need to show that no circle with a
smaller radius will do.

We have seen that the circle that goes through X , Y and Z includes all six squares. Since
any circle that includes all six squares must include these three points, to complete the proof
all we need show is that the circle that goes through X , Y and Z is the smallest circle which
includes all these three points.

The circle that goes through the vertices of a triangle is called the circumcircle of the
triangle.

We note first that XY Z is an acute-angled triangle. You are asked to check this in Problem
20.1.

It will therefore be sufficient to prove the general result:

If PQR is an acute-angled triangle then the smallest circle that includes PQR is its
circumcircle.

At first sight this may seem obvious. However, the condition that the triangle is acute-angled
is essential.

You are asked to show in Problem 20.5 that the circumcircle of a triangle with an obtuse
angle is not the smallest circle that includes the triangle.

So things are a little more subtle than might first appear. Somewhere our argument must use
the fact that we are dealing with a triangle all of whose angles are acute. Watch out for the
step where this is used.
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Suppose to begin with that the circle C with
centre O includes the triangle PQR as in the
figure on the right.

It is easy to see that if none of the points
P, Q and R lies on the circle, then we can
contract C to obtain a smaller circle, C′, also
with centre O, which includes the triangle
PQR and goes through at least one of the
vertices of the triangle.

You are asked in Problem 20.2 to show how
this smaller circle may be drawn.

P

Q R

O

C
C′

Now consider this smaller circle, C′, with centre O, which includes the triangle PQR, and
goes through one of its vertices, say Q, but not the other two, as in the figure on the right
below.

We can contract the circle to obtain a circle, C′′, that
still goes through Q, but also goes through another
of the vertices of the triangle PQR. This is fairly
obvious but we show precisely how the circle C′′
may be constructed.

The points on the perpendicular bisector of QP are
equidistant from Q and P. The points on one side
of it are closer to Q than to P, and the points on the
other side are closer to P than to Q. As P is inside
the circle C′, O is closer to P than to Q. Therefore O
lies on the opposite side of the perpendicular bisector
of PQ from Q. Hence the perpendicular bisector of
PQ meets OQ at some point, say S, that lies between
O and Q.

P

Q R

O

TS

C′

C′′

Similarly, the perpendicular bisector of QR meets OQ at some point say T , that lies between
O and Q.

Suppose that OT < OS. Then, as TQ = T R and T P < TQ, the circle C′′, with centre T and
radius TQ, goes through Q and R and includes the point P. Since TQ < OQ, the circle C′′
is smaller than the circle C′.
In the case where OT < OS, the argument is similar and we end up with a circle, C′′,
smaller than C′, that goes through P and Q and includes R. If OT = OS, the points S and T
coincide and C′′ is the circumcircle of the triangle PQR.

To complete the proof we now show that if PQR is an acute-angled triangle and C′′ is a
circle which includes the triangle and goes through the vertices Q and R but not P, then the
circumcircle, C∗, of PQR has a radius which is smaller than that of C′′.
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Let T be the centre of the circle C′′. Since C′′ goes
through Q and R, it follows that T lies on the perpen-
dicular bisector of QR. Since P lies inside C′′, we have
T P < TQ.

Let K be the midpoint of QR. Since ∠QPR is acute,
we have KQ < K P (You are asked to prove this in
Problem 20.3.)

It follows that the points T and K are on opposite sides
of the perpendicular bisector of PQ, and therefore the
point U , where the perpendicular bisector of PQ meets
KT , lies between T and K .

P

Q R

T
U
K

C′′

C∗

The point U is the centre of the circumcircle of triangle PQR. As U is between T and K ,
UK < T K , and so

√
QK2 +UK2 <

√
QK2 + T K2. Therefore, by Pythagoras’ Theorem,

QU < QT . So the radius of the circumcircle, C∗, of triangle PQR is less than the radius of
the circle C′′.
It follows from this general result that the circumcircle of the acute-angled triangle XY Z is
the smallest circle which includes the points X , Y and Z . Therefore it is the smallest circle
that contains all six squares. We have already seen that this circumcircle has centre O and
radius 2

√
5. So the smallest circle which contains all six squares has radius 2

√
5.

For investigation

20.1 Check that the side lengths of the triangle XY Z are
√

10, 4 and 3
√

2 and verify that it is
an acute-angled triangle.

20.2 Suppose that the points P, Q and R are all inside the circle C with centre O. Show how to
find the radius of a circle C′ with centre O, which includes the triangle PQR and which
passes through at least one of its vertices.

20.3 Prove that if, in the triangle QPR, ∠QPR is acute and K is
the midpoint of QR, then KQ < K P.

P

Q RK

20.4 In the above solution we have twice used the fact that:

The point where the perpendicular bisectors of two of the sides of a triangle meet is
the centre of the circumcircle of the triangle.

Explain why this is true.

20.5 Let PQR be a triangle in which ∠QPR is obtuse. Find the smallest circle that includes
the triangle, and show that this circle is not the circumcircle of the triangle.
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21. Fiona wants to draw a 2-dimensional shape whose perime-
ter passes through all of the points P, Q, R and S on the
grid of squares shown.

Which of the following can she draw?

(i) A circle
(ii) An equilateral triangle

(iii) A square

P

Q R

S

A only (i) and (ii) B only (ii) and (iii) C only (i) and (iii)
D all of (i), (ii) and (iii) E none of (i), (ii) and (iii)

Solution

B The figure on the left below shows that it is possible to draw a square through the points
P, Q, R and S. The figure on the right shows that it is also possible to draw an equilateral
triangle through these points.

P

Q R

S P

Q R

S

We now show that it is not possible to draw a circle through these four points.

The centre of each circle through the points Q and
R is equidistant from Q and R and hence lies on
the perpendicular bisector, l, of QR.

Similarly the centre of each circle through the
points P and S lies on the perpendicular bisector,
m, of PS.

The lines l and m are each perpendicular to the
horizontal lines of the grid and so they are parallel.
So there is no point which is on both lines.

It follows that there is no point equidistant from
P, Q, R and S. Therefore there is no circle which
goes through these four points.

P

Q R

S

` m

It follows that B is the correct option.
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22. A bag contains m blue and n yellow marbles. One marble is selected at random from the
bag and its colour is noted. It is then returned to the bag along with k other marbles of the
same colour. A second marble is now selected at random from the bag.

What is the probability that the second marble is blue?

A
m

m + n
B

n
m + n

C
m

m + n + k
D

m + k
m + n + k

E
m + n

m + n + k

Solution

A In the context of the SMC it is sufficient to eliminate those options which cannot be correct
for all possible values of m, n and k.

The probability that the second marble selected is blue is 0 if m = 0, and is 1 if n = 0. Only
the formula given in option A meets both these requirements. So, assuming that one of the
options is correct, it must be option A.

However, for a complete mathematical solution we need to give an argument to show that
the formula given in option A is correct. We do this as follows.

The probability that the first marble selected is blue is
m

m + n
. If the first marble chosen is

blue, it and k other blue marbles are put in the bag, which now contains m + n + k marbles
of which m + k are blue. So the probability now that the second marble that is selected is

blue is
m + k

m + n + k
. Therefore the probability that the first marble selected is blue and the

second marble selected is blue is
( m

m + n

) ( m + k
m + n + k

)
.

The probability that the first marble selected is yellow is
n

m + n
. If the first marble selected

is yellow, it and k other yellow marbles are placed in the bag, which now contains m + n+ k
marbles of which m are blue. So the probability now that the second marble that is selected
is blue is

m
m + n + k

. Therefore the probability that the first marble selected is yellow and

the second marble that is selected is blue is
( n

m + n

) ( m
m + n + k

)
.

Hence the overall probability that the second marble selected is blue is( m
m + n

) ( m + k
m + n + k

)
+

( n
m + n

) ( m
m + n + k

)
=

m(m + k) + mn
(m + n)(m + n + k)

=
m(m + n + k)

(m + n)(m + n + k)
=

m
m + n

.

Remark

Notice that this probability is independent of the value of k and is the same as the probability
that the first marble selected is blue. We have been unable to find an explanation of why this is
so other than the calculation given in the solution. If you have a more straightforward way to
explain this, please let us know!
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23. Which of the following have no real solutions?

(i) 2x < 2x < x2 (ii) x2 < 2x < 2x (iii) 2x < x2 < 2x (iv) x2 < 2x < 2x
(v) 2x < 2x < x2 (vi) 2x < x2 < 2x

A (i) and (iii) B (i) and (iv) C (ii) and (iv) D (ii) and (v)
E (iii) and (v)

Solution

E We can deduce from the wording of the question that four of the given inequalities have
solutions and two do not.

In the context of the SMC it is sufficient to find numerical solutions for four of the inequali-
ties, because this will eliminate all but one of the given options.

After trying various values for x it turns out that we need only consider the values −1, 1
2 , 3

2
and 5 (other choices will also work).

When x = −1, we have 2x = −2, 2x = 1
2 and x2 = 1. So in this case 2x < 2x < x2.

Therefore (i) has a solution.

When x = 1
2 , we have x2 = 1

4 , 2x = 1 and 2x =
√

2. So in this case x2 < 2x < 2x .
Therefore (ii) has a solution.

When x = 3
2 , we have x2 = 9

4 , 2x = 2
√

2 and 2x = 3. So in this case x2 < 2x < 2x.
Therefore (iv) has a solution.

Finally, when x = 5, we have 2x = 10, x2 = 25 and 2x = 32. So in this case 2x < x2 < 2x .
Therefore (vi) has a solution.

We can therefore deduce that it is inequalities (iii) and (v) that do not have solutions.

However, a complete mathematical solution requires us to prove that (iii) and (v) have no
solutions.

One approach might be to draw the graphs of the functions, and you are asked to do this in
Problem 23.2 below. However, this leaves open the question as to how we can be sure that
the information derived from the graphs is correct. After all, we cannot draw a graph which
shows the full range of values of x. So this approach wouldn’t count as a fully rigorous
argument.

A fully rigorous argument which does not rely on drawing a graph uses ideas from advanced
calculus that are not normally met until the first year of a university course. We therefore do
not give this argument here, but Problems 23.3 and 23.4 will begin to lead you in the right
direction.
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For investigation

23.1 In the above solution, in showing that x = 3
2 is a solution of inequality (iv), we used the

fact that 9
4 < 2

√
2 < 3. Show, without using a calculator, that this is correct.

23.2 Draw the graphs of the curves given by y = 2x, y = x2 and y = 2x .

It is difficult to draw these graphs by hand accurately enough. So it is best to use a
computer graph plotter. This will indicate that there are no values of x for which either
of the inequalities 2x < x2 < 2x or 2x < 2x < x2 holds. However, as mentioned above,
this not a full mathematical solution without an argument to show that the information
derived from the graphs is correct.

23.3 Find the values of x for which x2 = 2x and for which x2 < 2x.

23.4 Find all the solutions of the equations 2x = 2x and 2x = x2. In each case, how can you
be sure that you have found all the solutions?

24. Which of the following is smallest?

A 10 − 3
√

11 B 8 − 3
√

7 C 5 − 2
√

6 D 9 − 4
√

5
E 7 − 4

√
3

Solution

A We first note that 10 − 3
√

11 =
√

100 − √99, 8 − 3
√

7 =
√

64 − √63, 5 − 2
√

6 =√
25 − √24, 9 − 4

√
5 =
√

81 − √80, and 7 − 4
√

3 =
√

49 − √48. So the options are
given by the formula

√
n + 1 − √n, for n = 99, 63, 24, 80 and 48, respectively.

If we put x =
√

n + 1 and y =
√

n in the difference of two squares identity (x − y)(x + y) =
x2 − y2, we obtain (√

n + 1 −
√

n
) (√

n + 1 +
√

n
)
= (n + 1) − n = 1.

From this it follows that

√
n + 1 −

√
n =

1√
n + 1 +

√
n
.

Since
√

n + 1 +
√

n increases as n increases, it follows that the larger the value of n the
smaller is the value of

√
n + 1− √n. Therefore the smallest of the given options corresponds

to the largest value of n. So 10 − 3
√

11 is the smallest of the given options.

For investigation

24.1 Arrange the numbers given as the options in Question 24 in order of magnitude, with the
smallest number first, without using a calculator.

24.2 Arrange the following numbers in order of magnitude, with the smallest number first
(again without using a calculator, of course).

6 − 3
√

3, 7 − 2
√

10, 9 − 6
√

2, 11 − 4
√

7, 13 − 4
√

10.
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25. Figure 1 shows a tile in the form of a trapezium, where α = 831
3°. Several copies of the

tile are placed together to form a symmetrical pattern, part of which is shown in Figure 2.
The outer border of the complete pattern is a regular ‘star polygon’. Figure 3 shows an
example of a regular ‘star polygon’.

1

2

1α α

Figure 1 Figure 2 Figure 3

How many tiles are there in the complete pattern?

A 48 B 54 C 60 D 66 E 72

Solution

B The figure on the right shows part of the complete pattern.
The heavier lines form part of the border of the ‘star
polygon’.

The complete pattern is made up of an even number of
tiles. Let the number of tiles be 2n, where n is a positive
integer. α

α
β

The ‘star polygon’ has 2n edges and so it has 2n internal angles. From the figure we see that
n of these angles have size α and n of them have size β, where β = α + 180°. Therefore the
sum of the internal angles of the ‘star polygon’ is nα + n(α + 180°), that is, n(2α + 180°).
Since α = 831

3°, 2α + 180° = 1040°
3 . So the sum of the internal angles is n × 1040°

3 .

On the other hand, the sum of the internal angles of a polygon with 2n edges is (2n−2)×180°.

The two expressions we have obtained for the sum of the internal angles are equal, and so
we have

(2n − 2) × 180 = n × 1040
3
.

This last equation may be rearranged to give(
360 − 1040

3

)
n = 360,

that is,
40
3

n = 360,

from which it follows that

n =
3
40
× 360

= 27.
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We deduce that the ‘star polygon’ has 2n = 54 sides.

For an alternative method, see Problem 25.4.

For investigation

25.1 The solution uses the fact that the sum of the internal angles of a polygon with 2n edges
is (2n − 2) × 180°. Show why this is the case.

25.2 Suppose that α = 80°. How many edges does the ‘star polygon’ have in this case?

25.3 Suppose that the ‘star polygon’ has 72 edges. What is the value of α in this case?

25.4 In this problem we consider an alternative method for answering Question 25. Consider
moving anticlockwise around the perimeter of the ‘star polygon’. At each vertex you
either turn anticlockwise through the angle (180° − α) or clockwise through the angle α.

(a) Suppose that the ‘star polygon’ has 2n edges. What is the total anticlockwise angle
that you turn through as you move anticlockwise around it?

(b) Since in going completely round the ‘star polygon’ anticlockwise you turn through
an angle 360°, what value does this give for n?

Remark

This problem was inspired by some floor tiling in the Church on Spilled Blood in St Petersburg.
This church, also called the Church of the Saviour on Spilled Blood or the Cathedral of the
Resurrection of Christ, is in St Petersburg in Russia.
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