Junior Mathematical Olympiad 2010

The Junior Mathematical Olympiad (JMO) has long aimed to help introduce able students to (and to
encourage in) the art of problem-solving and proof. The problems are the product of the imaginations of
a small number of volunteers writing for the JMO problems group. After the JMO, model solutions for
each problem are published in the solutions booklet and the UKMT Yearbook.

However, these neatly printed solutions usually represent only one approach (often where several are
feasible) and convey none of the sense of investigation, rough-working and false-starts that usually
precede the finished article.

In marking JMO scripts, markers want to encourage complete (and concise) proofs in section B but, in
doing so, are content to accept less than perfectly written answers, as long as it is clear where the proof
is going — we appreciate that there is a limited time available, and that to polish and to present takes the
place of considering another problem. Nevertheless, clarity and insight are what are looked for.

We have collected below a small number of solutions submitted for the JMO in 2010, with the aim that
future candidates can see what some Year 8 students (and younger ones) do achieve and that they might
aspire to emulate it. In many ways they are ordinary solutions, not brilliantly and startlingly original

— but mathematically they are to be commended, in particular, for the logical progression from one point
to the next, and for clear presentation.

It is not easy to generalise about what makes a good solution or how a candidate can achieve success in
the JMO, but there are a few points to ponder on:

* using trial and improvement to a large degree is generally considered not very mathematical
— it will lend little insight into the structure of the problem, and even if you get an answer that
works, there should always be a concern that it is not the only answer;

* if you do have to resort to calculating your way through a large number of cases, then the
calculations should be shown as part the solution — the reader should not have to make
suppositions about what you have tried (or not tried);

* diagrams should be large enough to contain subsequent details — however, drawing just one
diagram can convey very little of the order of the proof, especially in geometrical questions;

* avoid long sentences, particularly those which frequently use if'and could be.

» the use of algebra makes it possible to express connections in simple ways, where a huge
number of words would be otherwise necessary;

» ifalgebra is used, variables should be fully declared — for example, in B3 below, saying
merely “Let Jack be x” led to much consternation for both candidates and markers over
whether speed or time was being referred to;

* attempt as many questions as you can do really well in — it is better, in terms not only of
scoring marks but also of honest satisfaction, to spend your time concentrating on a few
questions and providing full, clear and accurate solutions, rather than to have a go at
everything you can, and to achieve not very much in any of them. Of the 1000 students or so
who take part in the JMO, generally only a handful achieve full marks in all six
section B questions.

If this all sounds rather negative, it has, in balance, to be said that JMO candidates produce an astonishing
amount of work that is worthy of high praise. We hope that the work below will give future candidates a
flavour of what is to be encouraged, in style, method and presentation.



B1 In asequence of six numbers, every term after the second term is the sum of the previous two terms.
Also, the last term is four times the first term, and the sum of all six terms is 13.

What is the first term?
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B2 The eight-digit number “ppppgqqq”, where p and ¢ are digits, is a multiple of 45.
What are the possible values of p?
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Jack and Jill went up a hill. They started at the same time, but Jack arrived at the top one-and-a-half
hours before Jill. On the way down, Jill calculated that, if she had walked 50% faster and Jack had
walked 50% slower, then they would have arrived at the top of the hill at the same time.

B3

How long did Jill actually take to walk up to the top of the hill?
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B4

The solution to each clue of this Clues 1 2
crossnumber is a two-digit number, Across
not beginning with zero. 1. A triangular number

In how many different ways can the 3. Atriangular number

crossnumber be completed correctly?
Down

1. A square number

2. A multiple of 5
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B5 The diagram shows part of a regular 20-sided B C D

polygon (an icosagon) ABCDEF ..., a square
BCYZ and a regular pentagon DEVIWX.

Show that the vertex X lies on the line DY. Y
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B6  Sam has put sweets in five jars in such a way that no jar is empty and no two jars contain the same
number of sweets. Also, any three jars contain more sweets in total that the total of the remaining

two jars.
What is the smallest possible number of sweets altogether in the five jars
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