NST 3

1 June 2010

- 1. Let $n \geq 2$ be an integer. At every point of the co-ordinate plane with integral co-ordinates (i, j) we write i + j modulo n (an integer in the range [0, n 1]). Find all pairs (a, b) of positive integers such that the rectangle with vertices (0, 0), (a, 0), (a, b) and (0, b) has both the following properties.
 - (a) The remainders $0, 1, \ldots, n-1$ are each written the same number of times in its interior.
 - (b) The remainders $0, 1, \ldots, n-1$ are each written the same number of times on its boundary.
- 2. Find all real numbers t for which there exist real numbers x, y, z such that each of the following equations is satisfied.

$$3x^2 + 3xz + z^2 = 1$$
, $3y^2 + 3yz + z^2 = 4$, $x^2 - xy + y^2 = t$.

3. Let p be a prime number which leaves remainder 3 on division by 4. Consider the equation

$$(p+2)x^2 - (p+1)y^2 + px + (p+2)y = 1.$$

- (a) Suppose that x, y are positive integers which satisfy the equation. Show that p divides x.
- (b) Show that the equation has infinitely many solutions in positive integers.

Each problem is worth 7 points. Time: 4 hours 30 minutes.