Oundle Selection Test 1

4 hours 30 minutes

- 1. Find all nondecreasing functions $f: \mathbb{R} \to \mathbb{R}$ such that
 - (a) f(0) = 0, f(1) = 1;
 - (b) f(a) + f(b) = f(a)f(b) + f(a+b-ab) for all real numbers a, b such that a < 1 < b.
- 2. Let Γ_1 , Γ_2 , Γ_3 and Γ_4 be distinct circles such that Γ_1 , Γ_3 are externally tangent at P, and Γ_2 , Γ_4 are externally tangent at the same point P. Suppose that Γ_1 and Γ_2 ; Γ_2 and Γ_3 ; Γ_3 and Γ_4 ; Γ_4 and Γ_1 meet at A, B, C and D, and that these points are different from P.

Prove that

$$\frac{AB \cdot BC}{AD \cdot DC} = \frac{PB^2}{PD^2}.$$

- 3. Each positive integer a (written in base 10 notation) undergoes the following procedure in order to obtain the number d = d(a):
 - (a) move the last digit of a to the first position to obtain the number b;
 - (b) square b to obtain the number c;
 - (c) move the first digit of c to the end to obtain the number d.

(For example, for a=2003, we get b=3200, c=10240000, and d=02400001=2400001=d(2003).)

Find all numbers a for which $d(a) = a^2$.