British Mathematical Olympiad Committee

FINAL SELECTION TEST

Sunday 5th April 1992

Time allowed: $4\frac{1}{2}$ hours

- 1. Circles C_1, C_2 , with centres O_1, O_2 and radii r_1, r_2 respectively, are drawn so that the distance between their centres is given by $O_1O_2 = \sqrt{r_1^2 + r_2^2}$. The circles C_1 and C_2 intersect at A and B. From the point P on C_1 furthest from O_2 lines PA, PB are drawn to intersect C_2 at D, E respectively. Prove that DE is the diameter of C_2 perpendicular to O_1O_2 .
 - A point Q (distinct from P) is now chosen on the major arc AB of C_1 . Lines QA, QB are drawn to intersect C_2 at F, G respectively. Prove that FG is also a diameter of C_2 . Locate, with proof, the point where FB and GA meet.
- 2. Let a_n be the last non-zero digit in the decimal representation of n!. Does the sequence a_1, a_2, a_3, \ldots become periodic after a finite number of terms?
- 3. An ancient dwarfish ritual requires ten dwarves to stand on level ground as the sun rises on Midsummers's Day, so that
 - (*) among every subset of five dwarves some four lie on a circle.

Among all such arrangements, find the minimum value of the maximum number of dwarves who lie on a single circle.

What is the corresponding result for the arrangements of N dwarves satisfying (\star) ?