Q1 Let $x_1, x_2, ... x_n$ be real numbers such that $0 \le x_i \le 2$ for each i. Prove that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} |x_i - x_j| \le n^2$$
 When does equality hold?

- Q2 The in-circle of ΔABC, where AB > AC, touches BC at L, and LM is a diameter of the in-circle. AM produced cuts BC at N. (i) Prove NL = AB AC.
 - (ii) A circle S of variable radius touches BC at M. The tangents (other than BC) from B and C to S intersect atp. P moves as the radius of S varies. Find the locus of P.
- The sequence u_n is defined for positive integers by $u_1=1$, $u_{n+1}=u_n+\{u_n\sqrt{2}\}$ $(n\geqslant 1)$. Here $\{x\}$ denotes the nearest integer to x, i.e. the integer x such that $x-\frac{1}{2} \leqslant M \leqslant x+\frac{1}{2}$. Determine, with proof, the final (i.e. rightmost) digit of the integer u_{1985} .
- Q4 A,B,C,D are points on a sphere of radius 1. Given that AB.BC.CA.DA.DB.DC = $\frac{512}{27}$, prove ABCD a regular tetrahedron.
- Q5 Let B_n be the number of ways of partitioning a set with n elements, i.e. expressing it as the union of one or more non-empty subsets, no two of which have a common element. Eg. B₃=5, the partitionings of abc being a,b,c a,bc b,ac c,ab abc

Let C_n be the number of partitionings in which each subset has more than one element, e.g. $C_3=1$. Prove that for n>1

$$C_n = B_{n-1} - B_{n-2} + B_{n-3} - \dots + (-1)^n B_1$$

Q6 Solve in non-negative integers x,y,z the equation $5^{x}.7^{y} + 4 = 3^{z}$.