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1. The diagram shows a figure consisting of six line segments and a
circle, each containing three points.

Each point is labelled with a real number. The sum of the three
numbers on each line segment or circle is T .

Prove that each number is equal to 1
3T .

Solution

Commentary

This question is about sums of numbers, so a sensible first step seems to be to give
each number a name so we can write some equations.

Label the numbers as shown in the diagram below. There are seven unknowns and
we can write seven equations. You may know several different methods for solving
such systems of equations, for example elimination and substitution. In this case,
substituting from one equation into another is likely to produce long expressions.

A better method is to look for equations which share one or more unknowns and
eliminate those unknowns. For example, a + b + c = T and a + d + e = T . You can
subtract the two equations to obtain b + c − d − e = 0 and so b + c = d + e.

You can then look for another two equations that contain those four unknowns, for
example g + d + b = T and g + e + c = T . Subtracting those two gives d + b = e + c.
Adding this to the equation we found above gives 2b+ c+ d = 2e+ c+ d and so b = e.

You can use the symmetry of the situation to see that we can produce an analogous
proof showing that b = f . Having found that several of the unknowns are equal to
each other, it may be a good idea to relabel the diagram to show this. We can then
complete the proof, as we have done below.

Let the numbers labelling the points be as shown in the diagram.

Since T = a + b + c = a + d + e, we have b + c = d + e. Also,
T = b + d + g = c + e + g and so b + d = c + e. Therefore
2b + c + d = 2e + c + d and so b = e.

Substituting this back into b + d = c + e we obtain d = c.

Analogously, we can prove that b = f , and that d = a and d = g. a c

g

b

ef
d

We can therefore relabel the diagram as shown on the right.

Considering the three points on the circle, we have 3b = T and so
b = 1

3T . Considering the base of the triangle, 2d + b = T and so
d = 1

3T as well.

Thus each number is equal to 1
3T , as required.

d d

d

b

bb
d
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Note

The configuration in the question is known as the Fano plane (after Gino Fano, 1871–1952).

The Fano plane is an example of a “finite projective plane”. It has only seven points and seven
lines (represented as the six line segments and the circle in our diagram). Notice that every pair
of lines have one common point; hence, in this plane, every two lines intersect and there are no
parallel lines.
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2. The diagram shows two circles C1 and C2 with diameters
PA and AQ. The circles meet at the points A and B, and
the line PA is a tangent to C2 at A.

Prove that
PB
BQ
=

areaC1
areaC2

. A

BP Q

C1
C2

Solution

Commentary

In geometry questions, there are often lots of different extra lines we could draw, and
different lengths and angles we could calculate, so it can be difficult to decide where
to start. A useful strategy is to think about what we are trying to prove, and focus on
lines, angles or triangles which we think might be useful. This is essentially “working
backwards” from the answer; in writing up the solution, you need to be careful to start
with the given facts and end with the required conclusion.

Results about ratios of lengths can often be proved using similar triangles. In this
question we are also interested in the ratio of areas of the two circles. But the area
of the circle is proportional to the square of its diameter, so the required result is

equivalent to
PB
BQ
=

AP2

AQ2 .

The four lengths from the above equation appear in triangles ABP and ABQ. If you
can show that those two triangles are similar, you may be able to use the ratios of their
sides to get the required result.

To prove that two triangles are similar you need to find two pairs of equal angles.
At the first glance it looks like there are no angles given in this question. However,
diameters and tangents in circles create right angles, so this is a good place to start.

We present three possible solutions. The first two use sim-
ilar triangles. The third uses the tangent-secant theorem,
which says that in the diagram on the right, if XT is a
tangent to the circle, then X M × X N = XT2.

X

T

M
N

The third solution also uses the result that the angle between a diameter and the tangent
at an endpoint of the diameter is a right angle. In fact it uses this result twice. First
we use the fact that PA is tangent to C2 to conclude that PAQ is a right angle. Then
we use the converse of the result: since PAQ is a right angle and AP is a diameter of
C1, AQ is also a tangent to C1.
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Method 1

The angle in a semicircle is a right angle. Since AP is a diameter of
C1, ∠PBA = 90°, and since AQ is a diameter of C2, ∠ABQ = 90°.

Also, the angle between the tangent and the diameter of a circle at
the point of contact is a right angle. Since PA is a tangent to C2,
∠PAQ = 90°. Hence ∠APB = 90° − ∠PAB = ∠QAB. A

BP Q

C1
C2

Each of triangles PBA and ABQ has a right angle at B, and ∠APB = ∠QAB. Hence they are
similar (AA). Therefore, by considering the ratios of their sides, we obtain

PB
AB
=

PA
AQ

so that

PB =
PA × AB

AQ
, (1)

and again from the similar triangles
BA
BQ
=

PA
AQ

so that

BQ =
BA × AQ

PA
. (2)

Dividing equation (1) by equation (2), we get
PB
BQ
=

PA2

AQ2 .

But areaC1 =
1
4πAP2 and areaC2 =

1
4πAQ2. Therefore

PB
BQ
=

areaC1
areaC2

, as required.

Method 2

As in Method 1, ∠PBA = 90° and ∠ABQ = 90°. Therefore

∠PBQ = ∠PBA + ∠ABQ = 180°,

and so PBQ is a straight line segment.

Triangles PAQ and PBA share an angle at P and have right angles at A and B respectively, so
they are similar (AA).

Triangles PAQ and ABQ also share an angle, the one at Q, and also have right angles at A and B
respectively. Therefore they too are similar (AA).

From the similarity PBA ∼ PAQ we have
PB
PA
=

PA
PQ

, and from the similarity ABQ ∼ PAQ we

have
BQ
AQ
=

AQ
PQ

. Therefore

PB =
PA2

PQ
and BQ =

AQ2

PQ
,
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so that
PB
BQ
=

PA2

AQ2 ,

which is equivalent to the required result.

Method 3

First, prove that PBQ is a straight line segment as in the previous
solution.

Since PA is tangent to the circle C2 at A, ∠PAQ = 90°. But AP is
the diameter of C1, so AQ is a tangent to C1 at A.

A

BP Q

C1
C2

Using the tangent-secant theorem for circle C2 and point P, we obtain

PB × PQ = PA2.

Using the same theorem for circle C1 and point Q, we get

QB ×QP = QA2.

Dividing the first equation by the second gives
PB
QB
=

PA2

QA2 , and the required result follows.
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3. Punam puts counters onto some of the cells of a 5 × 5 board. She can put more than one
counter on each cell, and she can leave some cells empty. She tells Quinn how many
counters there are in each row and column. These ten numbers are all different.

Can Quinn always work out which cells, if any, are empty?

Solution

Commentary

It is usually a good idea to start by trying to produce some examples of arrangements
of counters that satisfy the given condition.

You then need to decide what you are trying to prove, drawing on your experience
from experimenting with some examples of ways of arranging the counters.

If you think that Quinn can always work out which cells are empty then you need
to show that this is the case for all possible arrangements for which the ten row and
column totals are all different.

If you think that Quinn cannot identify the empty cells, then you need to find an
example of two different arrangements which have the same row and column totals,
but the empty cells in different places.

No, it is not always possible for Quinn to identify the empty cells. Consider two arrangements
X , Y of Punam’s counters that are the same except in the top left 2 × 2 square, where, say, X has

1
0

0
1 while Y has

0 1
1 0 .

For example, X and Y could be as shown in the figures below.

9
0
0
1
0

8
3
0
0
1

7
1
0
1
0

6
0
0
0
0

5
0
3
0
0

X

9
0
0
0
1

8
3
0
1
0

7
1
0
1
0

6
0
0
0
0

5
0
3
0
0

Y

The row totals in these examples are 1, 2, 3, 4, 35 and the column totals are 10, 12, 9, 6, 8, all
different.

Since Quinn knows only the total numbers of counters in each row and column, she could not
distinguish X from Y , and therefore she cannot work out which cells are empty.

Note

If the problem is modified so that Punam can put at most one counter on each cell, with the
condition that all the row totals are different and all the column totals are different, then Quinn
can use the row and column totals to work out which cells are empty. Can you prove this?
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4. (a) In the trapezium ABCD, the edges
AB and DC are parallel. The point
M is the midpoint of BC, and N is
the midpoint of DA.

Prove that 2M N = AB + CD.

(b) The diagram shows part of a tiling of
the plane by squares and equilateral
triangles.

Each tile has edges of length 2. The
points X and Y are at the centres of
square tiles.

What is the distance XY?

X

Y

Solution

(a)

Commentary

There are several different ways to approach this part, and we present two possible
proofs here.

In the first proof, since we are interested in the length AB + CD, we are going
to extend the two bases of the trapezium, as shown in the diagram below. The
two identical copies of the trapezium make up a parallelogram with base length
AB + CD, so we just need to prove that N MP is a straight line parallel to the
base.

You may have seen this construction when deriving the formula for the area of
the trapezium. Our second proof explicitly uses the area of the trapezium: we
create a rectangle with base length N M and the area equal to the area of the
trapezium.

Method 1

Extend the side AB to point E and the side
DC to point F such that BE = DC and
CF = AB. Then AEFD is a parallelogram,
since the opposite sides AE and DF are
parallel and both have length AB + CD. It
follows that EF and AD are parallel and
equal in length. A B

CD

E

F

M
N

P

Let P be the midpoint of EF. Then AN and EP are parallel and have equal lengths, so
AEPN is also a parallelogram, and hence N P = AE = AB + CD.
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The trapezia ABCD and FCBE are congruent: we have already proved that the corresponding
sides are equal, ∠BAD = ∠CFE and ∠ADC = ∠FEB from the parallelogram, and
∠ABC = ∠FCB because the lines AE and DF are parallel.

M is the midpoint of BC, which is the shared side of the two trapezia.Therefore ∠N MC =
∠BMP. It follows that N MP is a straight line. The congruence of the two trapezia also
implies that N M = MP.

Therefore N P = 2M N and so 2M N = AB + CD, as required.

Method 2

Draw a line through N perpendicular to AB,
and let it meet AB at P and DC at S. Draw
another line perpendicular to AB through M ,
and let it meet AB at Q and DC at R, as
shown in the diagram. Note that some of
the P, Q, R and S will be on the sides and
some on the extensions of sides AB and DC;
it can be checked that the proof works in all
possible cases.

A B

CD

MN

P Q

RS

PQRS has four right angles, so it is a rectangle. Its base is equal in length to M N and its
height is equal to the height of the trapezium, h. Hence the area of the rectangle PQRS is
M N × h.

Triangles PAN and SDN are congruent: they are both right-angled, have equal angles at N
and AN=DN (since N is the midpoint of AD). Similarly, triangles QBM and RCM are
congruent. Hence the area of the rectangle PQRS equals the area of the trapezium ABCD.
Therefore we have:

M N × h = 1
2 (AB + CD)h.

It follows that 2M N = AB + CD, as required.

(b)

Commentary

The first thing you should ask is how you
can use the result from part (a). X and Y
are midpoints of the diagonals of the two
squares, so it seems sensible to look for a
trapezium with those two diagonals as sides.
The parallel sides of this trapezium are made
up of the sides and heights of the equilateral
triangle, so you can calculate their lengths.

X

Y

There are two things you need to prove before you can do the calculations. First,
you need to show that the sides labeled DC and AB in the diagram below are in
fact parallel. Second, you need to show that those lines pass through the points
S, R, P and Q.
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We claim that XY = 3 + 3
√

3. Here is a proof.

Extract four squares from the shaded part of the pattern, as shown in the diagram below. Let
A, B, C, D be the vertices of the squares containing the points X , Y , as shown. Also, going
from left to right on the “lower” zig-zag boundary of the figure, label the “bottom” vertices
of the two inner squares P, Q, and going from right to left on its “upper” boundary, label
the two “top” vertices of those squares R, S.

60°

2 2

60°

2 2
60°

X Y

C

BQ

R

A

D S

P

The bisector of the middle 60° angle is a line of symmetry of the figure. Reflection in
that line interchanges A and B and interchanges C and D. Consequently both AB and CD
are perpendicular to that line, and so AB is parallel to CD, that is, ABCD is a trapezium.
Therefore, using the result of part (a), 2XY = AB + CD.

The isosceles triangle with base AP has angle 60° at its apex, so its other two angles are 60°
also, and therefore it is equilateral. The isosceles triangle that has PQ as its base has angle
120° at its apex, hence angles 30° at P and Q.

Consequently ∠APQ = 60° + 90° + 30° = 180°, that is, APQ is a straight line. Similarly
(or by symmetry) PQB is a straight line. Thus the line segment AB passes through P and Q.
A very similar argument shows that the line segment CD passes through R and S.

Now AP = QB = SR = 2, since those are the sides of equilateral triangles.

The length PQ is equal to twice the height of the equilateral triangle, as can be seen from
the diagram of the full tiling above (in the commentary). Using Pythagoras’ Theorem, the
height of the equilateral triangle of side 2 is

√
3. Hence PQ = DS = RC = 2

√
3.

Therefore AB = 2 + x + 2 = 4 + 2
√

3 and DC = x + 2 + x = 2 + 4
√

3. By part (a),
2XY = (AB + CD) = 6 + 6

√
3, so XY = 3 + 3

√
3 as claimed.
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5. Alia, Bella and Catherine are multiplying fractions, aiming to obtain integers. Each of
them can multiply as many fractions as she likes (including just one), and can use the
same fraction more than once.

Alia’s fractions are of the form
n + 1

n
, where n is a positive integer.

Bella’s fractions are of the form
6p − 5
3p + 6

, where p is a positive integer.

Catherine’s fractions are of the form
4q − 1
2q + 1

, where q is a positive integer.

Which integers can each of them obtain?

Solution

Commentary

The first thing to do is to try multiplying some fractions and see what integers you
can get. Hopefully you can find how to obtain any integer greater than 1 using Alia’s
fractions, and decide that Bella cannot obtain any integers.

Catherine’s task is more challenging. You may want to start by listing several of her

fractions —
3
3
,
7
5
,
11
7
,
15
9

, . . . — and seeing what integers can be obtained from them.

After some experimenting, you may start to suspect that you can obtain larger odd
integers by using some of the smaller ones. For example, if you can obtain 7 then you

can use it to obtain 11 by doing
11
7
× 7.

Integers that do not appear as numerators of Catherine’s fractions are a bit more
difficult. For example, to obtain 13 you need to realise that 39 appears as a numerator

in
39
21

, and so you can obtain 13 as
39
21
× 7.

This suggests that you should look for a slightly different calculation depending on
whether the required odd integer is of the form 4m − 1 or 4m + 1. Integers of the form
4m − 1 appear as numerators of Catherine’s fractions, so if you can obtain 2m + 1

then you can also obtain 4m − 1 = (2m + 1) ×
4m − 1
2m + 1

. To obtain an integer of the

form 4m + 1 you need to look at 3(4m + 1) = 12m + 3, because this does appear as

the numerator of the fraction
12m + 3
6m + 3

.

Taking n = 1, Alia gets the integer 2. Now if N > 2, then Alia can obtain N as
2
1
×

3
2
×· · ·×

N
N − 1

.
Thus Alia can obtain any positive integer except 1. (She cannot obtain 1 because all her fractions
are greater than 1.)

Bella, however, cannot obtain any positive integers. Her store consists of fractions of the form
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N
3D

, where the positive integer N is not a multiple of 3.

If she multiplies m of these fractions together she will obtain a fraction of the form
X

3mY
, where

the positive integer X is not multiple of 3. Since the term 3m cannot cancel, this will never be a
positive integer (we must have m ≥ 1).

Since the fractions available to Catherine have odd numerator and odd denominator, the same
will be true of any fraction she can create by multiplying them. Therefore she certainly cannot
reach any even positive integers. She can, however, reach every odd positive integer.

This may be seen as follows. Let f (q) be the fraction
4q − 1
2q + 1

.

Then f (1) = 1, f (4) × f (7) =
15
9
×

27
15
= 3, and 3 × f (4) = 3 ×

15
9
= 5. Thus Catherine can

obtain 1, 3 and 5.

Suppose now that m ≥ 2 and Catherine has managed to obtain all odd numbers up to and
including 4m − 3. We know that she can do this for m = 2. Since 2m + 1 ≤ 4m − 3, she can
obtain 2m + 1, and so she can use the calculations

4m − 1 = (2m + 1) ×
4m − 1
2m + 1

= (2m + 1) × f (m) and

4m + 1 = (2m + 1) ×
12m + 3
6m + 3

= (2m + 1) × f (3m + 1)

to add 4m − 1 and 4m + 1 to her list, so as to extend it to all odd numbers up to and including
4m + 1 = 4(m + 1) − 3.

This means that, having obtained 5, she can obtain 7 and 9, then 11 and 13, and so on. Hence
Catherine can obtain any odd positive integer.

Note

The method we used for Catherine, where we prove a result about a certain positive integer by
using the same result for a smaller integer, is called proof by induction. You may learn about it in
your future studies; it is a very useful method for proving results about positive integers.
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