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Instructions

• Time allowed: 3 hours.

• Full written solutions – not just answers – are required, with complete proofs of
any assertions you may make. Marks awarded will depend on the clarity of your
mathematical presentation. Work in rough first, and then write up your best attempt.
Do not hand in rough work.

• One complete solution will gain more credit than several unfinished attempts. It is
more important to complete a small number of questions than to try all the problems.

• Each question carries 10 marks. However, earlier questions tend to be easier. In
general you are advised to concentrate on these problems first.

• The use of rulers and compasses is allowed, but calculators and protractors are
forbidden.

• Start each question on a fresh sheet of paper. Write on one side of the paper only.
On each sheet of working write the number of the question in the top left hand corner
and your name, initials and school in the top right hand corner.

• Complete the cover sheet provided and attach it to the front of your script, followed
by your solutions in question number order.

• Staple all the pages neatly together in the top left hand corner.

• To accommodate candidates sitting in other timezones, please do not discuss the
paper on the internet until 8am BST on Friday 21 September.

Do not turn over until told to do so.
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1. The numbers a, b and c are real. Prove that at least one of the three numbers
(a + b + c)2 − 9bc, (a + b + c)2 − 9ca and (a + b + c)2 − 9ab is non-negative.

2. Let S = {a1, a2, . . . , an} where the ai are different positive integers. The sum of the
elements of each non-empty proper subset of S is not divisible by n. Show that the
sum of all elements of S is divisible by n. Note that a proper subset of S consists of
some, but not all, of the elements of S.

3. Find all positive integers m and n such that m2 + 8 = 3n.

4. Does there exist a positive integer N which is a power of 2, and a different positive
integer M obtained from N by permuting its digits (in the usual base 10 represen-
tation), such that M is also a power of 2? Note that we do not allow the base 10
representation of a positive integer to begin with 0.

5. Consider the triangle ABC. Squares ALKB and BNMC are attached to two of
the sides, arranged in a “folded out” configuration (so the interiors of the triangle
and the two squares do not overlap one another). The squares have centres O1 and
O2 respectively. The point D is such that ABCD is a parallelogram. The point Q
is the midpoint of KN , and P is the midpoint of AC.

(a) Prove that triangles ABD and BKN are congruent.

(b) Prove that O1QO2P is a square.

Time allowed: 3 hours
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Solutions

These are polished solutions and do not illustrate the process of failed ideas and rough
work by which candidates may arrive at their own solutions.

The mark allocation on Maths Olympiad papers is different from what you are used to
at school. To get any marks, you need to make significant progress towards the solution.
So 3 marks roughly means that you had most of the relevant ideas, but were not able to
link them into a coherent proof. 8 or 9 marks means that you have solved the problem, but
have made a minor calculation error or have not explained your reasoning clearly enough.

The UK MOG 2012 was marked on Sunday 30 September at St Paul’s School, London,
by a team of Mary Fortune, James Gazet, Jeremy King, Jonathan Lee, Gerry Leversha,
Joseph Myers, Vicky Neale, Peter Neumann, Jack Shotton, Geoff Smith and Alison Zhu,
who also provided the remarks and extended solutions here.

1. The numbers a, b and c are real. Prove that at least one of the three numbers
(a + b + c)2 − 9bc, (a + b + c)2 − 9ca and (a + b + c)2 − 9ab is non-negative.

(Croatia 2008)

Solution A

It will be enough to show that the sum of the three expressions is non-negative,
since the sum of three negative expressions would have to be negative. But this
sum is

3(a + b + c)2 − 9(ab + bc + ca) = 3(a2 + b2 + c2 + 2ab + 2bc + 2ca)− 9(ab + bc + ca)

= 3(a2 + b2 + c2 − ab− bc− ca)

=
3

2
(a2 − 2ab + b2 + b2 − 2bc + c2 + c2 − 2ca + a2)

=
3

2

(
(a− b)2 + (b− c)2 + (c− a)2

)
≥ 0

since squares of real numbers are always non-negative.



Solution B

Since the expressions are symmetric in a, b and c, we may assume without loss of
generality that a ≤ b ≤ c. Now (a + b + c)2 ≥ 0 since it is the square of a real
number. In the case that a ≤ 0 ≤ c, we note that −9ca ≥ 0 so the expression
(a + b + c)2 − 9ca will be non-negative and we are finished.

In the case that 0 ≤ a ≤ b ≤ c, the largest of the three expressions will clearly be

(a + b + c)2 − 9ab = (a2 + b2 + c2 + 2ab + 2bc + 2ca)− 9ab

= (a2 − 2ab + b2) + (c2 − ab) + (2bc− 2ab) + (2ca− 2ab)

= (a− b)2 + (c2 − ab) + 2(bc− ab) + 2(ca− ab).

But this is non-negative since the first term is the square of a real number and
c2 ≥ ab, bc ≥ ab and ca ≥ ab in this case.

In the final case that a ≤ b ≤ c ≤ 0, the largest of the three expressions will be

(a + b + c)2 − 9bc = (a2 + b2 + c2 + 2ab + 2bc + 2ca)− 9bc

= (b2 − 2bc + c2) + (a2 − bc) + (2ab− 2bc) + (2ca− 2bc)

= (b− c)2 + (a2 − bc) + 2(ab− bc) + 2(ca− bc).

But this is non-negative since the first term is the square of a real number and
a2 ≥ bc, ab ≥ bc and ca ≥ bc in this case.

Remarks

The key to proving that a quantity is non-negative is usually to show that it is the
square of a real number, or the sum of more than one such square. Both solutions
rely on recognising such useful identities as a2 − 2ab + b2 = (a− b)2.

In Solution A, the idea of adding the three expressions is far from obvious, but it
has the advantage of creating a single expression which is completely symmetric in
a, b and c. Rewriting a2 + b2 + c2− ab− bc− ca as 1

2
((a− b)2 + (b− c)2 + (c− a)2)

is a particularly clever step if you have not seen it before.

There are some exotic methods of proving the key inequality a2+b2+c2 ≥ ab+bc+ca,
such as using the AM–GM, Cauchy–Schwarz or Rearrangement Inequalities. But
the details of how these are being used must be provided by the candidate, and any
relevant restrictions (such as a, b and c being positive) should be observed.

The approach in Solution B was more common. Where the order of a, b and c is
irrelevant, it can be helpful to choose a fixed order arbitrarily. The phrase ‘without
loss of generality’ means that we are proving the result for all possible orders by
assuming one particular order.

A clever shortcut that some candidates found was to reduce the case a ≤ b ≤ c ≤ 0
to the case 0 ≤ a ≤ b ≤ c by replacing a, b and c by −c, −b and −a respectively.

Trying a few values for a, b and c can be a good idea to help get a feel for the
problem, but this is not sufficient for a proof. Algebra is essential here to show that



the result holds for all values of a, b and c. Using algebra to prove special cases such
as a = b may give further insight, but this is still not sufficient for the general case.

Some candidates chose to replace b and c by new variables such as a + x and a + y.
This could be a helpful step in Solution B since x and y would be non-negative, but
it destroys the symmetry in Solution A.

There are several traps when dealing with inequalities. It is vital to remember that
if X ≤ Y then −X ≥ −Y . If X ≤ Y it does not always follow that X2 ≤ Y 2. Also,
if we establish that X ≤ Y and Y ≥ Z, we can say nothing about the relationship
between X and Z.

2. Let S = {a1, a2, . . . , an} where the ai are different positive integers. The sum of the
elements of each non-empty proper subset of S is not divisible by n. Show that the
sum of all elements of S is divisible by n. Note that a proper subset of S consists of
some, but not all, of the elements of S.

(Slovenia 2002)

Solution Here is a direct proof. For each i in the range 1 to n let si = a1+a2+· · ·+
ai. Now if two quantitites sj, sk (with j < k leave the same remainder on division
by n, then subtracting we see that sj+1 + · · ·+ sk is divisible by n. Therefore we are
finished unless each si leaves a different remainder on division by n. However, there
are only n possible remainders on division by n, and so some si leaves remainder 0
in division by n, and therefore is divisible by n.

Here is another way of presenting the same ideas, but this time by using a contra-
diction argument. Assume, for contradiction, that a counterexample S exists. Let
si = a1+a2+· · ·+ai for i = 1 to n. If for different j and k with j < k we have sk−sj
divisible by n, then aj+1 + aj+2 + · · · + ak is a multiple of n which is impossible.
Therefore s1, s2, . . . , sn leave different remainders on division by n, and so one of
them must leave remainder 0, which is absurd.

It is not important for the validity of the solution, but it is interesting to note that
the configuration described can arise. For example, choose ai = in + 1 for each i,
so the ai are different, and each leaves remainder 1 on division by n. Therefore the
sum of any j of these numbers (0 < j < n) leaves remainder j 6= 0 on division by n.

3. Find all positive integers m and n such that m2 + 8 = 3n.

(South Africa, Sharp Competition in the 151st Mathematical Digest)

Solution Suppose that m and n are positive integers satisfying m2 + 8 = 3n.

Then m2 = 3n − 8 is odd (since 3n is odd), so m must be odd.

The square of any odd number leaves remainder 1 when divided by 4 (in the language
of modular arithmetic, if m is odd then m2 ≡ 1 (mod 4)).

So m2 + 8 also leaves remainder 1 when divided by 4.

This means that n must be even (if n is odd, then 3n leaves remainder 3 when
divided by 4). Say that n = 2k, where k is also a positive integer.



Then the equation m2+8 = 3n can be rewritten as 8 = 32k−m2 = (3k−m)(3k +m).

Since m and k are integers, so are 3k −m and 3k + m. Also, m and k are positive
and so 3k + m is positive, so 3k −m must also be positive, and 3k −m < 3k + m.
So 3k −m and 3k + m are positive integers whose product is 8, and we can check
the possibilities.

Case 1: 3k −m = 1, 3k + m = 8. Then, adding these, 2× 3k = 9 — but this gives
a value for 3k that is not an integer, so this is not possible.

Case 2: 3k − m = 2, 3k + m = 4. Then, adding these and dividing by 2, we get
3k = 3 and so k = 1 and m = 1. This gives m = 1 and n = 2, and it is clear that
this really is a solution.

So the only solution is m = 1, n = 2.

Remarks When a question asks us to “find all solutions”, this means that we
should find all solutions and give a proof that we have done so. Many candidates
correctly noticed that m = 1, n = 2 is a solution, but rather fewer had a strategy
for showing that they had found them all.

The ideas of modular arithmetic are really important in mathematics, and if you
aren’t familiar with them then you might like to do some research. There’s an
NRICH article http://nrich.maths.org/4350 on the subject of modular arithmetic.

With this question, we assumed that m and n satisfied the equation m2 + 8 = 3n,
and we had to find a way to draw some conclusions about m and n. Quite a lot of
candidates noticed that m must be odd, and this is a useful start. Thinking about
remainders on division by 4 is a way of taking this idea further, and using 4 as the
modulus was a good plan both because it meant that the 8 would disappear and
also because every odd square leaves remainder 1 when divided by 4.

We might well have then played around to see what happens to powers of 3 when
divided by 4. This is clear in the notation of modular arithmetic, because 3n ≡ (−1)n

(mod 4). (Playing around with examples can be very helpful for getting a feel for
what is going on, but it then needs to be followed by a proof of any resulting
assertions.) And we find that n must be even.

Once we know that n is even, we really have to write it as twice an integer, and to
rewrite the resulting equation.

At this point we needed to spot the difference of two squares. Quite a few candidates
asserted that the only squares that differ by 8 are 1 and 9, but not many of them
backed that up with a proof. It may seem intuitively obvious, but it is important
to have a rigorous justification.

Factorising a2− b2 as (a− b)(a+ b) is very often a good idea, and one should always
be alert for opportunities to use this factorisation.

Candidates who thought of the factorisation were then typically able to finish off
the argument pretty efficiently, as described above.



When solving a Diophantine equation (an equation where we seek integer solutions),
one often makes use of the fact that we want integer solutions by thinking about
factors, and this question is a good example of that.

4. Does there exist a positive integer N which is a power of 2, and a different positive
integer M obtained from N by permuting its digits (in the usual base 10 represen-
tation), such that M is also a power of 2? Note that we do not allow the base 10
representation of a positive integer to begin with 0.

(Iran Mathematical Olympiad, first round 1999)

Solution We give a proof by contradiction. Suppose (for contradiction) that N is
a power of 2 and that M is obtained from M by rearranging its digits, and is also
a power of 2. We may assume that M < N (else swap M and N). Next, since they
are both powers of 2, it follows that N = 2M , 4M or 8M . The ratio cannot be 16
or more because M and N have the same number of digits.

Now, the remainder when a positive integer is divided by 9 is the same as when the
sum of its digits is divided by 9. You can quote this as a well-known fact, but in
case you have not seen a proof, we will supply one shortly. It follows that M and
N leave the same remainder on division by 9, so their difference (M , 3M or 7M) is
divisible by 9. In each case, it must be that M is divisible by 9. However, M is a
power of 2, so this is impossible. Our initial assumption was therefore false, so no
such N exists.

The proof is finished, but in case you have never seen a proof of the well-known fact,
here it is. Suppose that the positive integer u is written anan−1 . . . a1a0 in base 10
notation. This is just a short way of saying that

u = an10n + an−110n−1 + · · ·+ a110 + a0.

Now let s = an + an−1 + · · ·+ a0 be the sum of the digits of u.

First we show that u− s is divisible by 9. Now

u− s = (an10n + an−110n−1 + · · ·+ a210 + a1)− (an + an−1 + · · ·+ a0)

= an(10n − 1) + an−1(10n−1 − 1) + · · ·+ a1(10− 1) + 0.

The numbers which are of the form 10i− 1, for i ≥ 1 are, in base 10 notation, 9, 99,
999, 9999, etc., and each of this is a multiple of 9 because 9 = 9 ·1, 99 = 9 ·11, 999 =
9 · 111 and so on. Therefore each ai(10i − 1) is a multiple of 9, and therefore so too
is their sum, so u− s is divisible by 9.

Write u and s with smallest possible remainders r1 and r2 on division by 9, so
u = 9k+ r1 and s = 9l+ r2 where r1, r2 are non-negative integers which are as small
as possible, so each is less than 9. Then u− s = 9(k − l) + (r1 − r2). However, this
is divisible by 9, so r1 − r2 is divisible by 9. However, −8 ≤ r1 − r2 ≤ 8 and so
r1− r2 = 0, and therefore r1 = r2. We have established the “fact” used in the proof
above.



We could have clinched the main argument another way. We could have said “it is
a well known fact that the number M and its digit sum s differ by a multiple of 9.
The same is true for N , and so N −M = (N − s)− (M − s) = N −M is a multiple
of 9”.

The special case that a number is divisible by 9 if, and only if, its digit sum is
divisible by 9, seems to be better known than the version about remainders, but the
proof of the more general result is almost the same as the proof of the toy version,
so really the more general result is not any harder, and it is very useful. Think
about the question, “what is the remainder when 20122012 is divided by 9?”.

5. Consider the triangle ABC. Squares ALKB and BNMC are attached to two of
the sides, arranged in a “folded out” configuration (so the interiors of the triangle
and the two squares do not overlap one another). The squares have centres O1 and
O2 respectively. The point D is such that ABCD is a parallelogram. The point Q
is the midpoint of KN , and P is the midpoint of AC.

(a) Prove that triangles ABD and BKN are congruent.

(b) Prove that O1QO2P is a square.

(Croatia 2008)

Solution

A

B
C

L

K

N M

O1

O2

D

Q

P

First we make some general remarks about how to approach geometry problems.

(a) Side angle side. We have KB = BA because they are the sides of the same
square. Also BN = BC for the same reason, and BC = AD because opposite
sides of a parallelogram have the same length. Finally angle 6 NBK is the
supplement of angle 6 ABC. Now the line AB is transverse to the parallel
lines AD and BC, so angles 6 ABC and 6 DAB are supplementary. Therefore
6 DAB = 6 NBK.



(b) Rotation about O1 through a right angle effects the congruence in (a). There-
fore PO1Q is an isosceles right angled triangle. Similarly QO2P is an isosceles
right angled triangle. Putting them together we get the required square.

Remarks Note that many other solutions are possible, for example via the existence
of the Varignon parallelogram with vertices at the midpoints of the sides of the
quadrilateral AKNC. You just have to find a reason that this parallelogram is a
square.

Alternatively, if you know about complex numbers, then put the diagram in the
complex plane with 0 at B. Let a be be the complex number corresponding to A
and c be the complex number corresponding to C. Now the complex number corre-
sponding to P is 1

2
(a+ c). The the complex number corresponding to Q is 1

2
i(a− c).

The complex number corresponding to O1 is 1
2
a(1 + i). The complex number corre-

sponding to O2 is 1
2
c(1− i). The fact that we have a square on our hands is now a

routine calculation, for example by showing that the complex numbers correspond-
ing to its four sides (taken in anticlockwise order, and oriented anticlockwise) can
be generated from one of them by repeated multiplication by i. An argument by
tiling should also be possible (details only wafted in the reader’s general direction):
take infinitely many (or at least a few) of copies of the two squares and triangle
ABC, and fit them together to tile the plane (or a portion of it) in the natural way.
Then argue about rotational symmetries of the pattern.

Here is some extra advice from another marker who is also a very experienced
schoolteacher:

Perhaps it is worth beginning by emphasising generality. Don’t begin with an equi-
lateral or a right-angled isosceles triangle. Such attempts rarely got any credit.
Make sure that the letters follow each other in order around the figure and make
sure that the diagram is correct.

A proof is not a random enumeration of facts. A candidates who simply lists many
‘facts’ (even if they are all true) and then expects the marker to choose the relevant
two or three to fit into a proof should receive no credit. Draw an accurate diagram
please, and make sure that you label different points with different letters, and that
your proof relates to this diagram.

For part (a), give the correct congruence condition (SAS) and remember that the
angle must be between the sides. Once you decide that is where you are going, the
argument quickly reduces to showing that two angles are equal. Do not evaluate
every angle in sight; take a look at what you want to prove, and then focus on
important angles. It is quite acceptable to use transformational methods, but if you
do so you must state the transformation precisely (rotation, centre, angle, sense)
and then be sure that you have all the necessary evidence that it is relevant.

For part (b), the midpoint theorem is helpful. This says that in a triangle ABC,
with B1 and C1 the midpoints of CA and AB respectively, the line segment C1B1

is parallel to BC and half its length. This leads on the the theory of the Varignon
parallelogram (look it up). That very soon establishes that O1QO2P is a rhombus.



Hence all you have to do is to show it has one right-angle, for that will make it
into a square. A rotational argument very useful here. Alternatively, two isosceles
right-angled triangles on the same base form a square, since the base angles of each
triangle ar 45◦ so we have a rectangle. The common diagonal is the length of any
side multiplied by

√
2, so the rectangle is a square.

There were few solutions using complex numbers or coordinate methods. There
were some attempts at vectors, some of which worked (although interestingly one
successful solution abandoned vectors at the crucial last step and went back to
rotations). So it is perhaps not worth saying much about these; those who managed
to use them properly knew what they were doing. Perhaps one ought only to say
that if you are going to embark on coordinates you ought to choose your origin, axes
and scale carefully; similarly with a vector approach, and it is worth knowing that
the column vectors (ab ) and

(−b
a

)
are perpendicular. If you are going to use complex

numbers, you will use the fact that multiplication by i effects an anticlockwise
rotation in the usual Argand diagram, so if you want a clockwise rotation you will
need to use −i. Spiral similarities are in the FP3 section of A-level, of course.

Both texts “Crossing the Bridge” and “Plane Euclidean Geometry” are available
from UKMT, and will help you solve geometry problems if you use the books prop-
erly (do all the exercises).
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Statistics of results

247 candidates entered UK MOG 2012, of whom 160 returned scripts. Statistics of the
results of those 160 are shown below.
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