FAIRFIELD METHODIST SECONDARY SCHOOL

END-OF-YEAR EXAMINATION 2006 SECONDARY TWO EXPRESS

MATHEMATICS PAPER 1

Date:	10 th October 2006			Time: 1 h 15 min
NAME:		(}	CLASS:

INSTRUCTIONS TO CANDIDATES

- Answer ALL questions.
- 2. All answers are to be written in INK in the spaces provided.
- Omission of essential working will result in loss of marks.
- Use of calculator is NOT ALLOWED in this paper:

INFORMATION TO CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

You should not spend too much time on any one question.

For Examiner's Use

Paper	Marks	
1	/50	
2	/50	
Total	%	

This question paper consists of 12 printed pages.

Name: (

Class:

1.(a) Evaluate $2\frac{3}{5} - 1\frac{2}{3}$.

Answer

(a) _____[1]

(b) Calculate 45% of 4.8 kg.

Answer

(b) [1

(c) Divide 2.34 by 0.2 exactly.

Answer

(c) _____[1]

Name	:		_ ()		Class:	
2.(a)	Find t	he HCF of 12a ² bc ³ and 18ab ²	$^{2}c^{2}$.			•	
				Answer	(a)	•	_[2]
(b)	A map	o is drawn to scale of 1 : 50 0	00.				
	(i)	Calculate the actual distance cm on the map.	e of a	path, in km	n, which is	represented	i by 30
						क रहे हैं।	
		A	Answe	er (b)(i)		_[2]
	(ii) <u> </u>	Calculate the actual area of map by an area of 12 cm ² ?	a lak	e, in km², w	hich is rep	oresented or	the

Answer

ii) _____[2

Name:	()	Class:

- 3.(a) Given that y is directly proportional to x+2, and that y=10 when x=3,.
 - (i) express y in terms of x.

- Answer (a)(i) _____[2]
- (ii) Hence, find the value of y when x = -5.

- Answer (ii) _____[1]
- (b) Solve the inequality 2x 1 < 4(1 x). Illustrate your solution on a number line.

Name:	

Class: _____

4.(a) Expand and simplify (4x + 3y)(x - 2y).

Answer

(a) _____[2]

4.(b) Factorise completely

(i) $9a^2 - 4b^2$,

Answer

(b)(i) ______ [2]

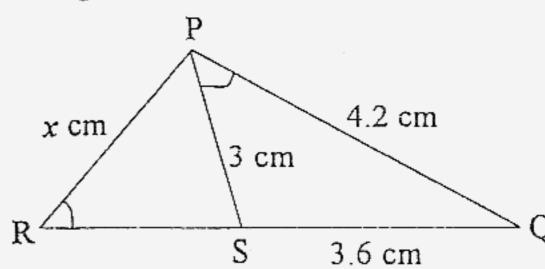
(ii) $9x^2 + 3x - 6$.

Answer

ii) _____

_[2]

Name:	(•
		L


Class:

4.(c) Solve the equation $\frac{2x-5}{3} - \frac{x-3}{6} = \frac{1}{2}$.

Answer

(c) _____[3]

5.(i) Given that PR = x cm, PQ = 4.2 cm, PS = 3 cm and SQ = 3.6 cm and $\angle PRQ = \angle SPQ$. Write down a pair of similar triangles.

Answer

____[1]

(ii) Find the length of x.

Answer

(ii)

[2]

Name:	()	Class:

- 6. (i) The interior angle of a n-sided regular polygon is 3 times its exterior angle. Find the value of n.
 - (ii) Name this polygon.

Answer	(i)	[2]	
	(ii)	-	[1]

7.(a) Solve the simultaneous equations 3x - 4y = 2,

2x + 7 = 6y.

Answer	(a)	[3]
	1 /	

ame:		() Class:
.(b)	(i)	Mr Low walked for 1 hour 15 minutes at an average speed of 10 km/h. How far did he walk?
		6
		Answer (b)(i)[1]
	(ii)	Assuming he is in a rush and he takes a taxi travelling at 25 km/h for the same distance as in part (i). How long does the journey take?
		Answer (ii)[1]
	(iii)	If he boards the taxi at 2.35 pm, at what time will he reach his destination?

Answer (iii) _____[1]

Name:	

-Class:	

8.(a) It is given that $\varepsilon=x:1\leq x\leq 15, x$ is a positive integer. Sets A, B and C are subsets of the universal set, ε . List the elements of

(i) $A = \{x : x + 3 \le 10 \},$

Answer

(a)(i) _

____[1]

[1]

(ii) $B = \{x : x \text{ is a multiple of } 3\},$

Answer

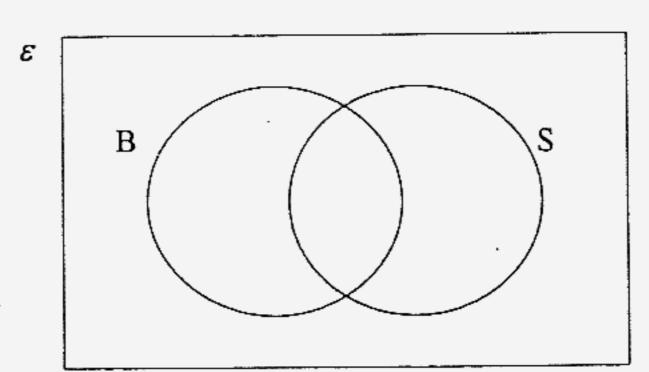

(ii)

(iii) C = A' I B.

Answer

(iii) _____

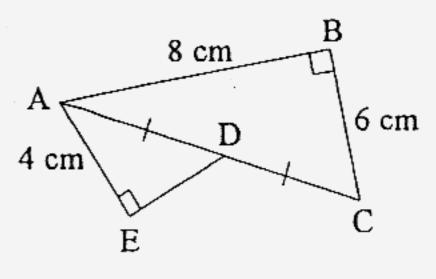
(iv) Hence, shade in the Venn Diagram below the region representing the setC. [1]



Name: (
Name.	Nama	1	•
	ivallie.	· · · · · · · · · · · · · · · · · · ·	

Class: _____

8.(b) 44 students were given a choice to join a CCA of their choice. It is given that B = students who choose basketball, S = students who choose soccer, $n(B \mid S) = x$, n(S) = 23 and n(B) = 30.


(ii) Hence, find the number of students who play soccer only.

Answer (b)(ii) _____[2]

8.(b) (iii) Describe the set B I S in words.

[1]

- Given that AB = 8cm, BC = 6 cm, AE = 4 cm, DE = x cm and AD = DC, find the 9. value of
 - AD, (i)

Answer

(i) _

(ii) ED.

Answer

The following are marks scored by 10 students in a Mathematics test marked out 10. of a total of 10:

3, 6, 4, 3, 5, 6, 7, 9, 6, 4

the modal mark, Find (i)

Answer (i) _____

Name:			()		Class:
10. ((ii)	the median mark,			
				,	
-		. •			
		•			
			Answer	(ii)	[1]
	/iii\	the mean of this set of	marke		

(III) the mean of this set of marks.

Answer

End of Paper

PAPER 2 (50 MARKS)

Name	()
	`	/

Class____

1 a) Express as a single fraction in its simplest form

$$\frac{3}{2x-3} - \frac{8}{x+2}$$

Answer a)_____[2]

b) Simplify
$$\frac{2y^2 - 3y - 5}{y^2 - 1} \div \frac{6y - 15}{y^2 + 1}$$

Vame	().	Class
------	---	----	-------

2 Factorise 12ab-20a+18bc-30c completely.

	•	
Answer		[2

- An oil trader bought some oil for \$500. He paid x for each litre of oil.
 - i) Find, in terms of x, an expression for the number of litres of oil he bought.

Due to a leak, he lost 3 litres of oil. He sold the remainder of the oil for \$1 per litre more than he paid for it. Write down an expression, in terms of x, for sum of the money he received and show that it is equal to \$\frac{(500-3x)(x+1)}{x}\$.

Name (١	Class
Name)	Class
	,	

- 3 iii) He made a profit of \$17.
 - (a) Write down an equation in x and show that it reduces to $3x^2 + 20x 500 = 0$.

[3]

iii) (b) Solve the equation $3x^2 + 20x - 500 = 0$.

Answer iii) (b)_____

Name	()) Cla	SS

3 iii) (c) Hence find the number of litres of oil he sold.

Answer iii) (c)_____[1]

4 i) Given that $t = \sqrt{\frac{g^2 + hr}{3r}}$, express r in terms of g, h and t.

Answer i)_____[2]

ii) Hence, calculate the value of r when g = 21, h = -4 and t = 12.

Name	•	/ \	Class
Name		()	Class

A biased die is thrown. If the probability of getting a six is 3 times higher than getting any one of the other five numbers, what is the probability of getting a four?

- •	-	
Answer	a)	[2]

b) Two unbiased dice are thrown. The possibility diagram when the two dice are thrown is shown below. For example, (1, 3) represents that the first die shows a number 1 and the second die shows a number 3.

(i) Complete the possibility diagram.

[1]

6	(1, 6)		(3, 6)		(5, 6)	(6, 6)
5	(1, 5)	(2, 5)			(5, 5)	
4		(2, 4)	(3, 4)	(4, 4)	•	(6, 4)
3	(1, 3)		(3, 3)	(4, 3)	(5, 3)	
2		(2, 2)			(5, 2)	
1	(1, 1)		(3, 1)	(4, 1)		(6, 1)
	1	2	3	4.	5	6

Nai	me	() Class
5	b)	(ii) List all the possible outcomes that both the numbers are prime numbers and find the probability that both the numbers are prime numbers.
		•
		Answer b) (ii) P(both nos. are prime) is[2]
		(iii) List all the possible outcomes that the difference of the two numbers is one and find the probability that the difference of the two numbers is one
		, and promote the difference of the two fluithbeld is offer
		Answer b) (iii) P(the difference of the two nos. is one) is[2]

Name()	Class
---------	-------

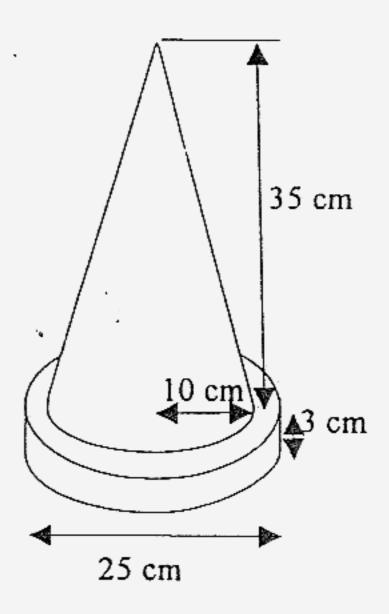
6 The distribution table below gives the ages of a group of 600 people:

Age (in completed years)	Number of people	Mid-Value
20-29	56	
30-39	87	
40-49	165	
50-59	184	
60-69	73	
70-79	23	4
80-89	12	

i) Complete the table.

[1]

- ii) Write down the modal class of the distribution.
- iii) Calculate an estimate mean age of the distribution.

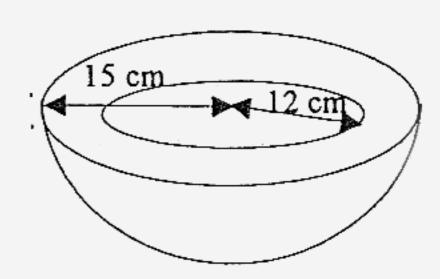

Answer	· ii)	[1]
	:::\	ro

Name	(() Class_	
		•	

[Take the value of π to be 3.142, leave your answers correct to 1 decimal place]

7 a) A Traffic Marker consists of a solid cone, of height 35 cm and radius 10 cm, with a solid cylindrical base of diameter 25 cm and thickness 3 cm.

(i) Calculate the volume of the cone in cm³.

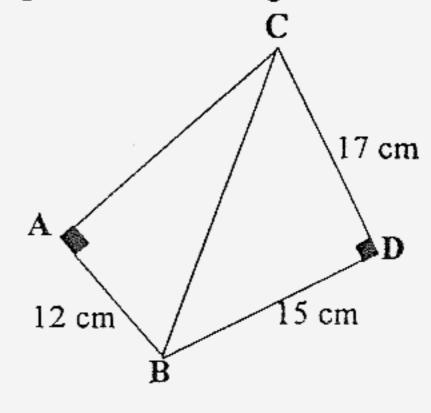

Answer	a)(i)	[2]
,,	α/(1/	14

(ii) Calculate the total volume of the Marker in cm³.

Answer	a)((11)	_
--------	-----	------	---

Name	()	Class
------	-----	-------

- b) A hemispherical bowl with internal radius of 12 cm and external radius of 15 cm is made from wood.
 - (i) Every part of the surface of the hemispherical bowl is to be painted gold. Calculate the area of the painted part of the bowl in cm².



Name(()		Class
	` '	-	

b) (ii) Calculate the number of litres of water it can hold when it is completely filled.

Answer	b)(ii)	[2]

8 Given that triangles ABC and BCD are right-angled triangles, find the length of AC.

Name	_() Class
------	------------

9 Answer the whole of this question on a piece of graph paper.

The following shows a table of values of x and y for the equation $y = 4x^2 - 4x - 15$.

Χ	-3	-2.5	-1	0	1	2	3	4
У	a	20	-7	-15	b	-7	9	33

i) Find the values of a and b.

[1]

Using a scale of 2cm to represent 1 unit for the x-axis and 1cm to represent 5 units for the y-axis, draw the graph of $y = 4x^2 - 4x - 15$ for $-3 \le x \le 4$.

[3]

iii) Write down the equation of the line of symmetry of this curve.

[1]

iv) On the same graph, draw the graph of the straight line y = 25 and hence write down the coordinates of the points at which the two graphs intersect.

[2]

v) Using your graph, solve the equation $4x^2 - 4x - 15 = 0$

[1]

-End of paper-

Answers

Answers	
1.(a) $\frac{14}{15}$	(b) 2.16 kg
(c) $11\frac{7}{10}$ or 11.7	•
2.(a) 6abc ²	(b)(i) 15 km
	(ii) 3 km ²
3.(a)(i) $y = 2(x + 2)$	(ii) $y = -6$.
(b) $x < \frac{5}{6}$ $0 > 5$ $0 > 6$	2
$4(a)$ $4x^2 - 5xy - 6y^2$	(b)(i) (3a + 2b)(3a - 2b)
	(ii) $3(3x-2)(x+1)$
(c) $x = \frac{10}{3}$ or $3\frac{1}{3}$	
5(i) PQR SPQ	(ii) $x = 3.5 \text{ cm}$
6.(a)(i) n = 8	(ii) Octagon
7.(a) x = 4, y = 2.5	(b)(i) $12\frac{1}{2}$ km
· · · · · · · · · · · · · · · · · · ·	(ii) hr
	(iii) 3.05 pm
8.(a)(i) A = 1, 2, 3, 4, 5, 6, 7	(ii) B = 3, 6, 9, 12, 15
(iii) C = 9, 12, 15	ε
9.(i) · AD = 5 cm	(ii) $x = 3$ cm
10.(i) 6	(ii) 5.5
(iii) 5.3	

1. (a) Evaluate the following:

$$2\frac{3}{5}-1\frac{2}{3}$$
 [1]

- (b) Find 45% of 4.8 kg [1]
- (c) Divide 2.34 by 0.12 exactly [1]
- (a) $2\frac{3}{5} 1\frac{2}{3} = \frac{13}{5} \frac{5}{3}$ [M] = $\frac{39 - 25}{15}$ = $\frac{14}{15}$ [A]
- (b) $\frac{45}{100} \times 4.8$ [M] = 2.16 kg [A]
- (c) $\frac{2.34}{0.2} = \frac{23.4}{2}$ [M] $= 11\frac{7}{10}$ or 11.7 [A]
- 2.(a) Find the HCF of $12a^2bc^3$ and $18ab^2c^2$.

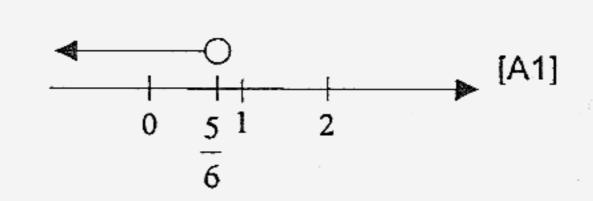
$$12a^2bc^3 = 2^2 \times 3 \times a^2 \times b \times c^3$$
 [M]

$$18ab^2c^2 = 2 \times 3^2 \times a \times b^2 \times c^2$$
 [M]

HCF of
$$12a^2bc^3$$
 and $18ab^2c^2 = 2 \times 3 \times a \times b \times c^2$ [M]

$$=6abc^2$$
 [A]

- 2.(b) (i) On a map with a scale of 1:50 000, what is the actual distance, in km, is represented by 30 cm on the map?
 - (ii) What will be the actual area of a lake in km², on the map with an area of _ 12 cm²?
 - (i) 1 cm represented 50 000 cm = 0.5 km [M1] hence, 30 cm will represented 30 × 0.5 = 15 km (actual distance) [A1]
 - (ii) 1 cm : 0.5 km1 cm² will represent $0.5 \times 0.5 = 0.25 \text{ km}^2$ [M1] hence, 12 cm² will represented $12 \times 0.25 = 3 \text{ km}^2$ (actual area of lake) [A1]
- 3.(a) Given that y is directly proportional to x+2, and that y=10 when x=3.
 - (i) Express y in terms of x.
 - (ii) Hence, find the value of y when x = -5.


(i)
$$y \propto (x+2)$$
 [M]
 $\Rightarrow y = k(x+2)$ [M]
when $y = 10$, $x = 3$, we have
 $10 = k(3+2)$
 $\Rightarrow k = 2$ [M]

$$\Rightarrow$$
 k = 2 [M]
Hence, y = 2(x + 2) [A]

(ii) when
$$x = -5$$

 $y = 2(-5+2) = 2(-3)$ [M]
 $= -6$ [A]

3.(b) Solve the inequality 2x - 1 < 4(1 - x). Illustrate your solution on a number line.

$$2x-1 < 4(1-x)$$

 $2x-1 < 4-4x$ [M]
 $6x < 5$
 $x < \frac{5}{6}$ [A]

4.(a) Expand and simplify the following:

$$(4x + 3y)(x - 2y)$$
= $4x^2 - 8xy + 3xy - 6y^2$ [M1]
= $4x^2 - 5xy - 6y^2$ [A1]

4.(b) Factorise the following:

(i)
$$9a^2 - 4b^2$$

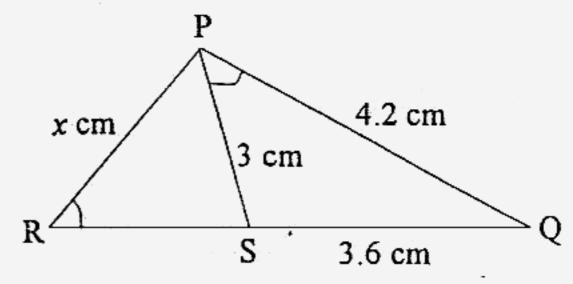
= $(3a)^2 - (2b)^2$ [M1]
= $(3a + 2b)(3a - 2b)$ [A1]

(ii)
$$9x^2 + 3x - 6 = (3x - 2)(3x + 3)$$
 [M]
= $3(3x - 2)(x + 1)$ [A]
- $3x - 2$
 $3x - 3$ [M1]
 $(-6x) + 9x = 3x$

4.(c) Solve the equation $\frac{2x-5}{3} - \frac{x-3}{6} = \frac{1}{2}$ $\frac{2(2x-5) - (x-3)}{6} = \frac{1}{2}$ [M1] 2(2x-5) - (x-3) = 3 [M] 4x - 10 - x + 3 = 3 [M]

$$3x = 10$$

[M]


$$x = \frac{10}{3}$$
 or $3\frac{1}{3}$

[A]

5.(i) Given that PR = x cm, PQ = 4.2 cm, PS = 3 cm and SQ = 3.6 cm and $\angle PRQ = \angle SPQ$. Write down a pair of similar triangles.

PQR SQP

[A1]

Answer

(i) _____[1]

(ii) Find the length of x.

Using similar triangles,

$$\frac{PR}{SP} = \frac{PQ}{SQ} = \frac{RQ}{PQ} \qquad [M]$$

$$\frac{x}{3} = \frac{4.2}{3.6} = \frac{RQ}{4.2}$$
 [M]

$$x = \frac{4.2}{3.6} \times 3$$
 [M]

[A]

Answer

(ii) _____[2

- 6.(a) (i) The interior angle of a regular polygon of n sides is 3 times the exterior angle. Find the value of n.
 - (ii) Name this polygon.

(i)
$$\frac{(n-2)180^{\circ}}{n} = 3\left(\frac{360}{n}\right)$$
 [M]

$$180^{\circ} n - 360^{\circ} = 1080^{\circ}$$

7.(a) Solve the pair of simultaneous equations.

$$6x - 8y = 4$$
 -- (3) [M]
- $6x - 18y = -21$ -- (4) [M]

take (3) - (4), we have

10y = 25
y = 2.5 [A]
sub y = 2.5 into (1), we have

$$3x - 4(2.5) = 2$$
 [M]
 $3x = 2 + 10 = 12$

x = 4[A]

Mr Low walked for 1 hour 15 minutes at an average speed of 10 km/h. (b) (i) How far did he walk?

1 hour 15 minutes =
$$1\frac{15}{60} = 1\frac{1}{4}$$
 or $\frac{5}{4}$ [M]

=
$$10 \times \frac{5}{4} = 12\frac{1}{2}$$
 km. [A]

Assuming he is in a rush and he takes a taxi travelling at 25 km/h for the 7.(b) (ii) same distance as above. How long does the journey take?

Time =
$$\frac{Dis \tan ce}{speed} = \frac{12\frac{1}{2}}{25} = \frac{1}{2} \text{ hr.}$$
 [A1]

The journey takes hr.

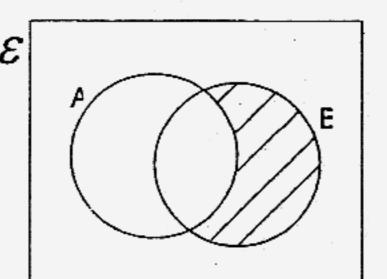
(iii)—If he boards the taxi at 2.35 pm, at what time will he reach his destination?

or 3.05 pm [A]

- 8.(a) It is given that $\varepsilon = x: 1 \le x \le 15$, x is a positive integer. Sets A, B and C are subsets of the universal set, ε . List the elements of
 - (i) $A = \{x : x + 3 \le 10 \}$

 $B = \{x : x \text{ is a multiple of } 3 \}$ (ii)

(iii) C = A' I B


[M]

$$C = 9, 12, 15$$

[A]


(iv) Hence, shade A I B

[1]

- 8.(b) 44 students were given a choice to join a CCA of their choice. If B = students who choose basketball, S = students who choose soccer. Given also $n(B \mid S) = x$, n(S) = 23 and n(B) = 30,
 - (i) Complete the Venn diagram to illustrate the above information. [1]

[A1]

(ii) Hence, find the number of students who choose soccer only;
 No. of students who choose soccer only

$$30-x+x+23-x=44$$
 [M]

$$53 - x = 44$$

[M]

$$x = 9$$

[M

No. of students who choose soccer = 23 - 9 = 14 [A.]

8.(b) (iii) Describe the set B I S.

[1]

Students who choose both basketball & soccer as their CCA.

[A1]

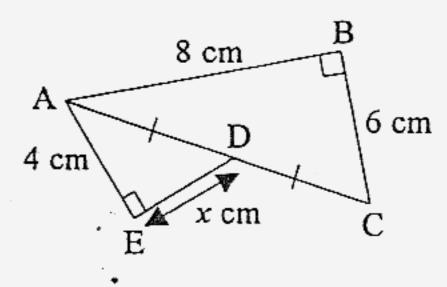
- 9. Given that AB = 8cm, BC = 6 cm, AE = 4 cm, DE = x cm and AD = DC, find the value of
 - (i) AD;
 - (ii) x.

Using Pythagoras' Thm,

(i) AC =
$$\sqrt{8^2 + 6^2} = \sqrt{100}$$

[M1]

$$AD = 10 \div 2 = 5 \text{ cm}$$


[A1]

(ii)
$$x = \sqrt{5^2 - 4^2} = \sqrt{9}$$

[M]

$$= 3 cm$$

[A]

	·		·
Name:		_(Class:

10. The following are marks scored by 10 students in a Mathematics test marked out of a total of 10:

- Find (i) the modal mark = 6 [A1]
 - (ii) the median mark;

the median mark =
$$\frac{5+6}{2}$$
 = 5.5 [A]

(iii) the mean of this set of marks.

Mean marks =
$$\frac{3+3+4+4+5+6+6+6+7+9}{10}$$
 [M1]
= $\frac{53}{10}$ = 5.3 [A1]

FAIRFIELD METHODIST SECONDARY SCHOOL

Secondary Two Express Mathematics Exam Paper 2 Answers

Name:_____ () Class: 2___

1. a)
$$\frac{-13x+30}{2x^2+x-6}$$

b)
$$\frac{y^2+1}{3(y-1)}$$

2.
$$2(3b-5)(2a+3c)$$

3. i)
$$\frac{500}{x}$$
 litres

iii) (a)
$$\frac{(500-3x)(x+1)}{x}$$
 - 500 = 17

iii) **(b)**
$$x = 10$$
 or $x = -\frac{50}{3}$ $(-16\frac{2}{3})$

iii) (c) 47 litres

4. i)
$$r = \frac{g^2}{3t^2 - h}$$

ii)
$$r = 1\frac{5}{436}$$
 or 1.01 (to 3 sf)

5. a)
$$\frac{1}{8}$$
 or 0.125

$$\{(2,2),(2,3),(2,5),(3,2),(3,3),(3,5),(5,2),(5,3),(5,5)\}$$
b) (ii)
$$\frac{1}{4}$$

$$\{(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(5,6),(6,5)\}$$
(iii)
$$\frac{5}{18}$$

(iii) Mean =
$$48.6$$
 (to 3 sf)

7. a) (i) Volume of cone =
$$3665.7 \text{ cm}^3$$

(ii) Total volume =
$$5138.5 \text{ cm}^3$$

7. b) (i) Area =
$$2573.3 \text{ cm}^3$$

9. i)
$$a = 33 b = -15$$

iii)
$$x = 0.5$$

v)
$$x = -1.5 \text{ or } 2.5 (+/-0.1)$$