SECONDARY SCHOOL ANNUAL EXAMINATIONS 2009

		Students	
	RY SCHOOL ANNUAL EXAM rectorate for Quality and Standards in Educational Assessment Unit	Education	
FORM 4	PHYSICS	TIME: 1h 30min	
Name:		Class:	ì

Answer all questions.

All working must be shown. The use of a calculator is allowed. Where necessary take acceleration due to gravity $g = 10 \text{m/s}^2$.

You might find the following list of formulae useful:

	Tou might mid the following list of formulae discreti.					
Motion	$v = u + at$ $s = ut + \frac{1}{2} at^{2}$	$a = \frac{v - u}{t}$				
Momentum	Momentum = mv					
Wiomentum	$Force = \frac{Change in Momentum}{time}$	$Force = \frac{mv - mu}{t}$				
Force	F = ma	W = mg				
	Q = It	W = QV				
	V = IR	$R = R_1 + R_2 + R_3$				
Electricity	P = IV	$R \alpha \frac{1}{A}$ $R \alpha L$				
	E = Pt					
Heat	$H = mc\Delta\theta$					

Number	1	2	3	4	5	6	7	8	Total
Max Mark	8	8	8	8	8	15	15	15	85
Actual Mark									

	Total Theory	Total Practical	Final Mark
Actual Mark			
Maximum Mark	85	15	100

Physics – Secondary School – Form 4

1. Fill in the table below:

Quantity	Symbol	Units
Specific heat capacity		J/kg °C
Heat Energy	Н	
	V	V
Charge		С
Current	I	
Distance		m
Final Velocity	v	
	a	m/s ²

StudentBounty.com

2.	A hairdryer has a power rating of 1100W when operating on an a.c. supply of
	230V.

a)	What does a.c. stand for?	[2]

b)	Calculate the current flowing in the circuit when the hairdryer is operated.	[2]

c)	Which of the following fuses is most appropriate to use with the hairdryer:	[1]
	3A, 5A or 13A?	

d) The lead of the hairdryer is connected to a plug as shown in the diagram. [3] Label the earth, the live and the neutral wires.

3. A negatively charged rod is shown in the diagram below.

a) Underline the correct word:

The rod is made of

polythene / perspex.

b) The rod is brought close to an uncharged metal conductor which has an insulating base. Draw the charges on the conductor

[2]

c) The conductor is earthed as shown in the diagram below. State what [1] happens to the charges on the conductor.

- d) The earth connection is removed and then the charged rod is also removed. [1] What is the charge on the conductor now?
- e) What happens if the rod is removed **before** the earth connection is [1] removed?
- f) The rod is now brought close to two uncharged metal spheres A and B as [2] shown. They are then separated while the negatively charged rod is held near A. The resulting charge on A is and the charge on B is

Physics - Secondary School - Form 4

As can be seen in the diagram, the dummy in the car moves forward [1]

i)

	as the car stops suddenly. Explain in terms of physics principles why this happens.
ii)	If the car is hit from behind when it is at rest, in which direction will the dummy be observed to move forward or backward?
	nan of mass 80kg is driving a car at a velocity of 20m/s. The car crashes the driver is stopped by the seatbelt.
i)	Calculate the momentum of the man before the car crashes.
ii)	What is the momentum of the man when he is stopped?
iii)	Find the change in momentum.
iv)	The driver is stopped by the seatbelt in 0.5s. Calculate the force exerted by the seatbelt on the driver.
Exp	lain why a seatbelt can decrease injury.

a)	What is her initial velocity u?	[1]
b)	What is her final velocity v?	[1]
c)	Calculate her acceleration.	[2]
d)	Find the distance Julia moved in the first 10s.	[2]
e)	After some time, she does not accelerate any more even though she cycles as fast as she can. She reaches a maximum constant velocity.	;
	i) This maximum velocity is called velocity.	[1]
	ii) What can you say about the forward and backward forces when this happens?	s [1]

SECTION B: Answer all questions.

6 A car moves along a level road.

The following table shows the velocity of the car.

X 1 /	m: :
Velocity in m/s	Time in s
0	0
5	10
10	20
15	30
20	40
25	50
25	60
25	70
25	80

Student Bounty.com

[2]

- a) Plot a graph of velocity in m/s (y-axis) against time in s (x-axis). [5]
- b) On your graph, label the part where the car moved: [2]
 - i) with an acceleration
 - ii) with constant speed.
- c) From your graph or otherwise find:
 - i) The initial velocity of the car, $u = \underline{m/s}$ [2]
 - ii) the maximum (largest) velocity of the car, v = m/s
 - iii) the <u>time</u> the car moved with an acceleration s [2]
 - iv) the acceleration. You may use the formula $a = \frac{v u}{t}$ [2]

i) The two resistors above are connected in

[1]

[2] iii) What is the voltage across resistor R?

iv)	Calculate the resistance of resistor R.	[2]

b) Robert and Louisa then set up the following circuit to test the resistance of different wires. A wire is placed across AB and the current is recorded.

Label the circuit diagram shown above. i) [2]

The wire AB is replaced by a longer wire but same thickness CD. [2] ii) The reading of the ammeter will since resistance of wire as the length increases.

	Students	\
iii)	The wire CD is removed and a wire EF of the same length as A	
	of a larger thickness is now connected. The reading of the ammeter	1
	will since resistance of wire	
	as the cross sectional area increases.	
iv)	The wire is then replaced by a piece of plastic. What happens to the ammeter reading? Explain.	[2]

8. a) Today measures to reduce the use of fossil fuels are being taken. One of these measures is to fix a solar water heater on the roof. Sam builds a homemade solar water heater as shown in the diagram below.

Underline the correct answer:

- i) The process by which the heat is transferred from the sun **to** the pipe [1] is called *conduction / convection / radiation*
- ii) The process by which the heat is transferred **through** the pipe is [1] called conduction / convection / radiation
- iii) When a hot liquid (less dense) moves up and a colder liquid moves [1] down to replace it, *conduction / convection / radiation* takes place.

- The pipe is painted black because black surfaces are better [1] v) absorbers / emitters of heat.
- Sam places a piece of plasticene at the top of the bottle as shown in [1] the diagram. He does this to prevent heat losses / heat gain.
- A large metal black container filled with 10kg of water is placed on a b) roof. After it is left for some time in the sun, the temperature of the water in the container rises from 20°C to 50°C.

- i) Calculate the rise in temperature. [2]
- ii) Use the formula, $H = mc\Delta\theta$, to find the quantity of heat energy absorbed by the 10kg of water if the specific heat capacity of water is 4200J/kg °C.
- iii) Underline the correct answer: [2]
 - If the container was made of **plastic** instead of **metal**, the rise in temperature of the water will be higher / lower/ the same
 - If a lid is placed on the container, the rise in temperature of the water will be *higher / lower/ the same*
- Before recording the temperature, the water must be stirred. Why is [2] this done?