SECONDARY SCHOOL ANNUAL EXAMINATIONS 2007

Educational Assessment Unit - Education Division

FORM 5	PHYSICS	TIME: 1 hr 45 min
NAME:		CLASS:

Answer ALL questions in the spaces provided on the Exam Paper. All working must be shown. The use of a calculator is allowed. Where necessary take the acceleration due to gravity, $g = 10 \text{ m/s}^2$.

Equations for Annual Exam Physics							
Density	$m = \rho V$						
Pressure	P=hρg	P = F/A					
Energy and Work	PE = mgh	$KE = \frac{1}{2} \text{ m } \text{v}^2$					
	E(orW) = Pt	W (or WD) = Fs					
Force	F = ma	W = m g					
Motion	$average = \frac{total\ distance}{total\ time}$	v = u + a t ²					
	$s = \frac{(u + v) t}{2}$	$s = \frac{1}{2}at^2$					
	momentum = m v						
Electricity	Q = It	W = QV					
	V = IR	$R = R_1 + R_2 + R_3$					
	$P = IV = I^2R = \frac{V^2}{R}$	Rα <u>length</u>					
Electromagnetism	$\frac{N_1}{N_2} = \frac{V_1}{V_2}$	area					
Heat	$H = m c \Delta \theta$						
Waves	c = f λ						

Marks Grid: For the Examiners' use ONLY

Question	1	2	3	4	5	6	7			Practical	Total
Max. Mark	8	8	8	8	8	15	15	15	85	15	100
Score											

This Section carries 40 marks

- An empty measuring cylinder has a mass of 75 g. Its mass increases to 100 g when some olive oil is poured into it. The volume occupied by the olive oil in the measuring cylinder is 30 cm³ (0.00003 m³).
- a. Calculate:
- i. the mass of the olive oil in the measuring cylinder in g,

1

ii. the density of this sample of olive oil in q/cm³.

1

iii. the mass of the olive oil in the measuring cylinder in kg,

1

iv. the density of this sample of olive oil in kg/m3.

2

b. It is noticed that when this sample of olive oil in the measuring cylinder is placed in a refrigerator and cooled to 5 °C, the level of the olive oil in the measuring cylinder gets lower as shown in the figures below.

The level of the olive oil sample at 20 °C

The level of the olive oil sample at 5 °C

State the effect (if any) of this cooling on the value of the:

i. mass of the olive oil in the measuring cylinder,

.

ii. volume of the olive oil in the measuring cylinder,

7

iii. density of the olive oil in the measuring cylinder.

- 2. a. Complete the following statements:
- i. A transverse wave is a wave in which the vibrations are at _____ ° to the direction of wave travel.

1

ii. A longitudinal wave is a wave in which the vibrations are at _____o to the direction of wave travel.

1

iii. The quantity of energy transferred by both kinds of waves depends on the ______ of the wave.

1

iv. The velocity of both kinds of waves depends only on the _____through which the wave travels.

v. Sound waves cannot travel through a _____.

1

b. The figure below represents a transverse wave travelling through a rope held firmly at end A and moved up and down at end B.

Use the above figure to calculate:

the number of complete waves,

1

ii. the wavelength λ in m,

İ.

1

iii. the **velocity of the wave** through the rope in m/s, given that the frequency of the vibration is 2 Hz

3. Maria drives from her home to the supermarket. The graph below shows how her speed changes throughout the **whole** journey.

- a. From the graph find:
- i. her highest speed in m/s,

m/s

1

1

1

1

ii. the **speed** in m/s while she travels at constant velocity,

- ____ m/s
- iii. the acceleration in m/s² during the first 40 s of her journey.
- ____ m/s²
- b. Maria stops at the traffic lights. How long does she wait at the traffic lights? _____ s 1
- c. Use the graph to find the **distance** in meters **M**aria covers during the **last 80 s** of her journey.
 - journey. 2
- d. Calculate:
- i. the momentum in kgm/s when Maria-is travelling at 24 m/s given that the total mass of the car and Maria is 5000 kg.
- ii. the average **braking force** F in N of Maria's car during the **last 40 s** of her journey given that the braking force F = change in momentum/time.

4.	The list below consists of some electrical components that might be found							
	in an electric circuit:							
	switch, filament lamp, diode, rheostat, light dependent resistor (LDR), short							
	connecting wire, thermistor.							
a.	Which of the above electrical components:							
i.'	has negligible resistance,	1						
ii.	causes a break in the circuit cutting current flow,	1						
iii.	has a resistance dropping rapidly when its temperature rises,	1						
iv.	has a high resistance in the dark.	1						
b.	The following circuit diagram shows two resistors R ₁ and R ₂ connected in series to a							
	12-Volt car battery.							
	12 V S							
	H							
	R_1 R_2							
	2Ω 4Ω							
,								
The	switch S is closed. Calculate the:							
i.	total resistance R in ohms of the circuit.	1						
ii.	current I in amperes flowing through the circuit,	1						
iii.	power P of the circuit in Watts.	1						
C.	Five different fuses of values: 2 A, 3 A, 5 A, 7 A, and 13 A are available. Which is the							
	best fuse which may be added to the circuit?	1						

- The following terms are associated with the study of the universe: 5. solar system, planet, galaxy.
- Place the terms in the list above, starting from the smallest: a.

1

The diagram shows Earth and four cities K, L, M, N on the Earth's surface. b.

State:

ii.

which cities are in daylight, İ. which cities are in night-time, ii. how long does it take city M to return to the same place again as Earth spins on its iii. axis, how long does it take Earth to complete one orbit around the Sun. iv. A communications satellite orbits around the earth in high orbit. C. _____ force keeps the satellite from escaping its orbit. 1 i. Explain why the geostationary satellite appears stationary from the Earth. 2

6. This question is about pressure

A storage tank contains a liquid. The graph below shows how the pressure in Pa due to the liquid only changes with its height in the tank.

a.	Choose the appropriate word to complete the sentence below from the following list
	origin, height, straight, pressure

The graph is a _____ line passing through the ____ . This shows that the _____ due to the liquid is directly proportional to its

- b. Using the graph find:
- İ. the depth of the liquid when the pressure due to the liquid is 9000 Pa.
- 2 ii. the pressure due to the liquid at a depth of 0.5 m, 2
- the total pressure in Pa at a liquid depth of 0.5 m, given that atmospheric pressure iii. is 100 000 Pa.

C. What is the **pressure** at the surface of the liquid?

2

d. The storage tank containing the liquid rests on a concrete roof. The base area of the storage tank is 4 m². Calculate the pressure exerted on the roof when the tank is completely filled with the liquid given that the total weight of the tank and the liquid is 8000 N.

3

7. This question is about the transformation of heat energy

The table below shows the **rise in temperature** which takes place when a lump of lead of mass of 2 kg hits the ground after it has been dropped from **different heights h**, assuming no energy losses.

rise in temperature / °C	0	1.0	2.0	3.0	4.0	5.0
height / m	0	13	26	39	52	65

a. On the graph paper provided, plot a graph, of rise in temperature (y-axis) against the height (x-axis).

1

6 -

b. From your graph find the:

2

i. rise in temperature when the lead lump is dropped from a height of 45 m,

ii. **the temperature** of the lead lump after being dropped from a height of 45 m given that the temperature of the surroundings is 20 °C,

2

 Calculate the **potential energy** when the 2 kg lump of lead is dropped from a height of 60 m

4

d. Choose the appropriate word to complete the sentence below from the following list: sound, potential, heat, kinetic.

8. This question is about electromagnetic induction.

a. David carries out an experiment to show that a current is induced in a coil when it cuts lines of magnetic flux. The experimental set up includes a coil, a magnet, a zero-centre galvanometer and connecting wire

- i. Fill in the missing labels in the above diagram.
- ii. Draw the magnetic field around the bar magnet.
- iii. State what happens while the magnet is pushed into the coil.
- iv. State what happens when the magnet is at rest inside the coil?

PLEASE TURN OVER

2

2

b. One use of electromagnetic induction is in the transformer. The diagram below shows a step-down transformer.

- i. Fill in the missing labels in the above diagram.
- ii. Calculate the **number of turns in the secondary coil** given that the number of turns in the primary coil is 2000 turns.

2