SECONDARY SCHOOLS ANNUAL EXAMINATIONS 2007

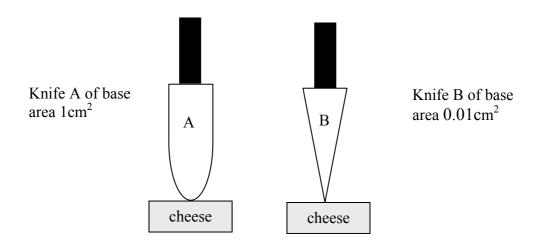
Educational Assessment Unit – Education Division

FORM 4	PHYSICS	TIME: 1h 30min
Name:		Class:
	hown. The use of a calculator is all acceleration due to gravity g = 10r	
You might find the fol	lowing list of formulae useful.	

Pressure	$P = \rho g h$	F = pA
Force	F = ma	W = mg
Motion	Momentum = mv	$s = \frac{1}{2} at^2$
	Impulse = Change in Momentum	
Electricity	Q = It	W = QV
	V = IR	$R = R_1 + R_2 + R_3$
	$P = IV = I^2R = \frac{V^2}{R}$	$R \alpha \frac{1}{A}$ $R \alpha L$
Heat	$H = mc\Delta\theta$	E = Pt

Number	1	2	3	4	5	6	7	8	Total
Max Mark	8	8	8	8	8	15	15	15	85
Actual Mark									

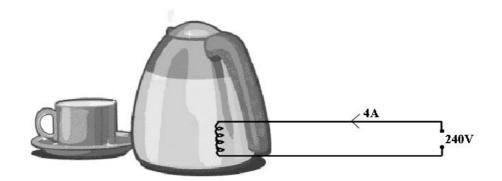
	Total Theory	Total Practical	Final Mark
Actual Mark			
Maximum Mark	85	15	100


SECTION A: Answer all questions in the spaces provided. This section carries 40 marks.

1.

b)	A mercury is used to measure atmospheric pressure	(1 mark)
U)	The space labelled A is a	(1 mark)
c)	The height of the column of mercury is measured by using a	(1 mark)
d)	If the atmospheric pressure <u>increases</u> ,	
	the level of mercury in the tubethe level of mercury in the reservoir	(1 mark)
	- the level of mercury in the reservoir	(1 mark)
e)	The atmospheric pressure on top of a mountain is than the	(1 mark)
	pressure at sea level	
(Find the atmospheric pressure if the height of mercury in the tube is 0.76m and the density of mercury is 13600kg/m ³	(2 marks
_	Francesca jumps out of a boat which is <u>at rest</u> . What is the momentum of the boat <u>before</u> Francesca jumps off?	
/	<u> </u>	` ′
ó)	What is the momentum of the boat before Francesca jumps off? Calculate the momentum of Francesca whose mass is 50kg, if she jumps off the boat with a velocity of 2m/s.	(1 mark) (2 marks (1 mark)
b) c)	What is the momentum of the boat before Francesca jumps off? Calculate the momentum of Francesca whose mass is 50kg, if she jumps off	(2 marks)
(v) (v)	What is the momentum of the boat <u>before</u> Francesca jumps off? Calculate the momentum of Francesca whose mass is 50kg, if she jumps off the boat with a velocity of 2m/s What is the momentum of the boat just <u>after</u> Francesca jumps off?	(2 mark)
a) b) c) d)	What is the momentum of the boat <u>before</u> Francesca jumps off? Calculate the momentum of Francesca whose mass is 50kg, if she jumps off the boat with a velocity of 2m/s What is the momentum of the boat just <u>after</u> Francesca jumps off?	(2 marks

3. a) The diagram below shows two knives, A and B.



- i) Gabriel makes a force of 10N to cut through cheese using knife A of base area 1cm². Find the pressure exerted on the cheese in N/cm².
- ii) If the base area of knife B is 0.01cm², find the force Gabriel needs to make to cut through the cheese with knife B using the <u>same pressure</u>.
- iii) Why is it easier to cut something using a sharp knife rather than a blunt one? (1 mark)
- b) Gabriel lies on two different mattresses as shown in the diagrams below.

- i) The pressure exerted is **larger** in diagram ____ (1 mark)
- ii) The the contact area, the **larger** the pressure (1 mark)
- iii) Which mattress is most comfortable? Diagram (1 mark)

4. Sarah heats 0.5kg of water in a small electric kettle to make some tea. The temperature of the water rises from 20°C to 80°C.

What is the rise in temperature?	(1 mark)
Given that the specific heat capacity of water is 4200J/kg°C find the heat energy needed to heat the 0.5kg of water from 20°C to 80°C.	(2 marks
If the current in the circuit is 4A and the voltage is 240V, find the power of the kettle.	(2 marks
Choose a fuse suitable for this circuit from the box below 3A, 5A or 13A	(1 mark)
Using your answers in b) and c) find the time taken to heat the water from 20°C to 80°C.	(1 mark)
In actual fact, more time is needed to heat the water, why is this so?	(1 mark)

	Magic Static Duster! Buy yours today!	
	Static dusters are the best way to dust your home. Now there's the Magic Static Duster which makes dusting easier than ever before!	
	The secret behind these dusters is static electricity.	
	To charge the magic static duster you only need a polythene bag. When the fibres in the duster become charged, the static force will lift the dirt particles with no effort at all!	
a)	The static magic duster becomes by rubbing it with the polythene bag.	(1 mark)
o)	Name the charges that are being transferred from the magic duster to the polythene bag.	(1 mark)
:)	The magic duster is brought close to a neutral dust particle. Draw the charges on the dust particle when it gets close to the magic duster.	(1 mark)
	dust particle magic duster magic duster magic duster magic duster	
d)	Why is the dust particle attracted to the magic duster?	(2 marks)
e)	If the dust particle sticks to the magic duster, what charge will it have now?	(1 mark)
)	What happens to the dust particle after some time? Explain	(2 marks)

SECTION B - Answer all questions. Each question carries 15 marks.

- 6. This question is about different sports:
 - a) Joanna's favourite sport is skydiving. The diagram below shows Joanna falling some time after she opens her parachute.

1)	Name the forc	es A and B	
	A=	B=	

(2 marks)

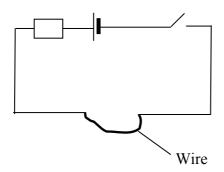
ii) Fill in the blanks using the following:

equal, constant, 10m/s², 0m/s², terminal (5 marks)

When Joanna jumps off the airplane, her initial acceleration is _____. Some time after she opens her parachute, force B and force C become _____ and the acceleration is _____. Thus she continues falling at ____ velocity called ____ velocity.

b) Mark's sport is driving a racing car.

i) Find the resultant force acting on the car ______ (1 mark)
 ii) If the mass of the car is 1500kg, find its acceleration. (2 marks)


iii) Mention two safety features of a modern car. (2 marks)

iv) Circle the correct answer (3 marks)

The backward force on the car may be reduced by using:

Wider tyres	True / False
A streamlined car design	True / False
A more powerful engine	True / False

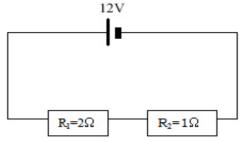
7. a) Two students were given the task to measure how the length of a wire changes the current in a circuit. They set up the apparatus below

i) In the above circuit, draw an ammeter to measure the current

(1 mark)

ii) Label the symbols below:

Easer the symbols serow.	
/	
— —	


(3 marks)

iii) After they find the current for each length of wire, they calculate the resistance for each length by using the formula V= IR

Resistance (Ω)	0.3	0.6	0.9	1.2
Length of Wire (cm)	5	10	15	20

Plot a graph of **Resistance on the y axis against length of wire on the x-axis** (4 marks)

- iv) The longer the wire, the _____ the resistance. (1 mark)
- b) Look at the circuit below

- i) How are the two resistors connected, in series or in parallel? (1 mark)
- ii) What is the total resistance of the circuit?______ (2 marks)
- iii) Find the current in the circuit (2 marks)

iv) In the above circuit, draw a voltmeter to measure the voltage across R_1 (1 marks)

8 Sue and Dave work in a fashion design company. They are asked to design a winter jacket with good insulation. Before they start their design, they need to find **which the best insulator is: feathers or a layer of cloth.** They are given the following apparatus:

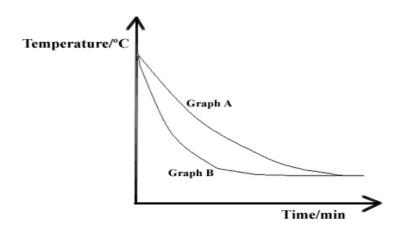
Can covered with feather as an insulation	Can covered with material as an insulation	Two thermometers	Boiling Water	Stopwatch

a)	١	Fill i	in the	blanks	with	the	foll	owing	word	c.
a	,	1,111	in the	Ulaliks	WILII	uic	1011	owing	WOIU	٥.

stopwatch, temperature, water, thermometer

The two cans are filled with hot _	A	is inserted in
each beaker and the	is switched on. The	is
recorded every two minutes.		

(4 marks)


b) Mention two precautions taken in their experiment.

1.			

2. _____

_____ (4 marks)

c) The following diagram shows the graphs obtained. Which graph shows the (1 mark) best insulator? Graph _____

d)	It is expected that the experiment which	(2 marks)	
	since air is a	conductor of heat.	

- e) This would not be a fair experiment if the inside of one beaker is silver and (2 marks) the other is black since black surfaces are _____ absorbers of heat whilst silver surfaces are ____ absorbers of heat.
- f) Dave and Sue design a quilted reversible jacket. One side of the jacket is black and the other side is white. Choose the best way to wear the jacket to keep a person warmer in winter.

Option 1 Black inside and Shiny White outside
Option 2 Shiny White inside and Black outside

Option

(2 marks)