SECONDARY SCHOOL ANNUAL EXAMINATIONS 2006

EDUCATIONAL ASSESSMENT UNIT- EDUCATION DIVISION

FORM 3PHYSICSTime: 1h 30min

NAME:

CLASS:

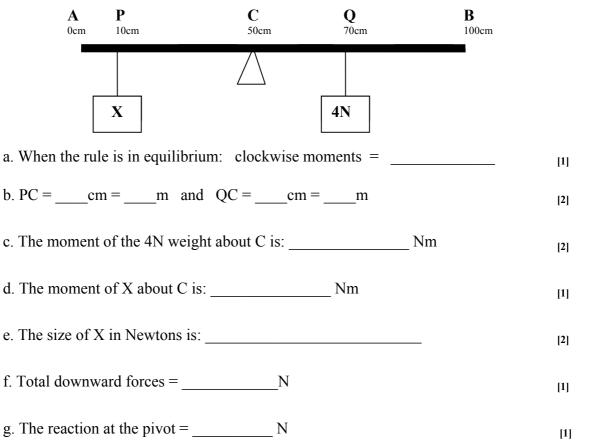
Answer all questions. All working must be shown. The use of a calculator is allowed.

Where necessary take acceleration due to gravity $g = 10m/s^2$.

You may find some of these formulae useful.

Area of triangle = $\underline{base \times height}_{2}$ area of trapezium = $\frac{h}{2}$ (sum of parallel sides) v = s/t v = u + at $s = at^2/2$ W = mg density = mass/volume work done = F s PE = mgh Power = $\frac{work \text{ done}}{time}$ $KE = \frac{mv^2}{2}$ moment of a force = Force X perpendicular distance magnification = $\frac{height \text{ of image}}{height \text{ of object}} = \frac{image \text{ distance}}{object \text{ distance}}$ refractive index of glass = $\frac{speed \text{ of light in air}}{speed \text{ of light in glass}}$

 $\begin{array}{l} \text{frequency} = \underline{\text{number of waves}} \\ \text{time} \end{array} \qquad \qquad \mathbf{v} = \mathbf{f} \, \boldsymbol{\lambda} \end{array}$


SECTION A: Answer all questions in the spaces provided. This section carries 55 marks.

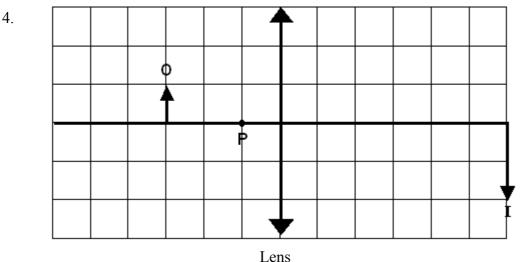
1. Fill in the table below:

	Quantity	Symbol	Unit	Instrument
i	Mass			Balance
ii	Time	t		
iii	Distance	S		
iv	Force			Spring balance
v	Volume			Measuring cylinder

[10]

2. The diagram shows a metre rule AB pivoted at its centre C. An object X is suspended from the 10 cms mark. When a 4N weight is suspended from the 70 cms mark, the rule is in equilibrium.

3. During an experiment on Hooke's Law, a student attached different loads to a spring.


Mass attached in kg.	0	0.5	1.0	1.5
Weight attached in N	0		10	
Length in cm.	20	22		26
Extension in cm.				
		•		[

[1]

[2]

a. Fill in the missing spaces in the table below:

- b. When the attached weights are removed, the spring regains its original length. This means that it obeys _____
- c. This experiment was repeated using heavier weights. When the attached weights are removed, the spring does **not** regain its original length. This means that the was exceeded.

Lens

The diagram shows how the image I of an object O is formed by a thin converging lens.

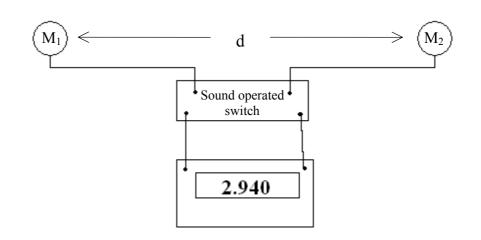
- a. (i) Measure the height of the object.
 [1]

 (ii) Measure the height of the image.
 [1]
 - (iii) The image magnification is ^[1]

b. From the tip of the object, draw:

- (i) a ray of light that passes through the **centre** of the lens and ends at the image. [1]
- (ii) another ray of light that is **parallel** to the axis and ends at the image. ^[1]

c.	Measure the focal length of the lens.	[1]
d.	Besides being magnified, the image is	[1]
e.	The object is moved to point P. The new image formed is than the object, and	[3]


5.

Gamma	ΙW	Visible	ID	microwayes	
rays	UV	spectrum	ш	microwaves	

a.		In the table above, the radiations are arranged in order of increasing wavelength. Fill in the missing radiations.	[2]
b.		UV stands for	[1]
c.		IR stands for The visible part of the spectrum is commonly known as	[1] [1]
d.		Name two properties common to all the radiations that form the electromagnetic spectrum.	
e.		Which of the radiations in the diagram:	- [2]
	(i) (ii)	is used to kill cancerous cells	[1]
	(iii)	is used to detect broken bones causes skin cancer	[1] [1]
6.			
a.		A battery-operated toy car running on flat ground changes chemical energy into and	[2]
b.		A bulb changes electrical energy into and	
c.		A changes energy from the sun into electricity	[2] [1]

Section B: Answer ALL questions. This section carries 45 marks

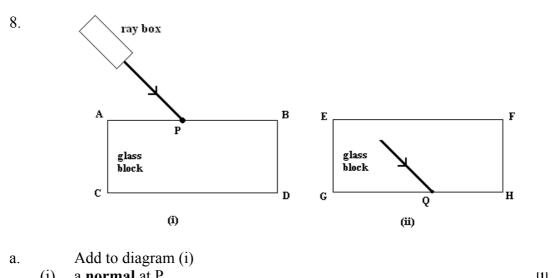
7.

electronic millisecond stop clock

 M_1 and M_2 are microphones placed a distance d apart. Any sound that reaches M_1 switches **on** the switch and the same sound arriving at M_2 switches it **off**. The stopclock records the time for the sound to travel a distance d. The table below shows the corresponding time intervals recorded on the stopclock when the distance d between the microphones is changed.

distance in metres	1.0	1.2	1.4	1.6	1.8	2.0
time t in milliseconds	2.9	3.5	4.1	4.7	5.3	5.8

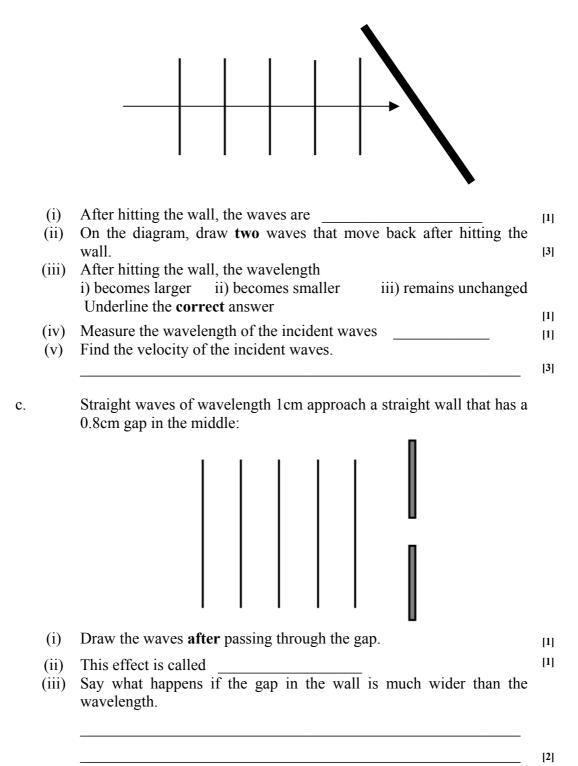
- a. On the graph paper provided, plot a graph of distance/m on the Yaxis against time/ms on the X-axis. Draw the best straight line. ^[8]
- b. The time recorded by the stopclock when the distance is 1.5m is:


(i) 3.2ms	(ii) 4.4ms	(iii) 5.1ms	
Underline the correct answer	ſ		[1]
Use the formula Distance =	Speed x Time to calculate t	he speed of	

[3]

- c. Use the formula Distance = Speed x Time to calculate the speed of sound in air when d=1.4m and t=4.1ms (0.0041s)
- d. What reading on the stopclock would you expect if the distance between the microphones is increased to 3m? _____ [1]

- The speed of sound in air is: e.
 - (i)
 - larger than the speed of light smaller than the speed of light (ii)
 - (iii) equal to the speed of light


Underline the **correct** answer

[2]

	(i)	a normal at P	[1]
	(ii)	the refracted ray that continues from P	[1]
b.		Mark on diagram (i)	
	(i) (ii)	the angle of incidence . Denote this by <i>i</i> the angle of refraction . Denote this by <i>r</i>	[1] [1]
c.		Add to diagram (ii)	
	(i)	a normal at Q	[1]
	(ii)	the emergent ray that leaves the block at Q	[1]
d.	(i)	At Q, the ray of light may not emerge into the air beyond GH. This happens when the angle between the ray and the normal is larger than the	
		the	[2]
	(ii)	What is this effect called?	[2]
	(iii)	This effect has various applications in industry and medicine. Name one such application	[2]
e.		Glass is optically denser than air. This means that the velocity of light in glass is than that in air.	[1]
f.		If the speed of light in air is 3.0×10^8 m/s and the speed of light in glass is 2.0×10^8 m/s, calculate the refractive index of glass.	
			[2]
			[4]

- 9. In a ripple tank:
- a. (i) straight waves are produced by a _____ [1]
 - (ii) circular waves are produced by a _____ [1]
- b. Straight waves of frequency 20Hz approach a straight wall:

