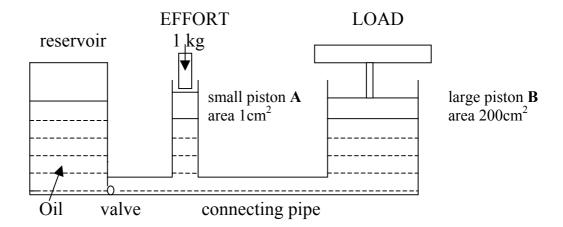
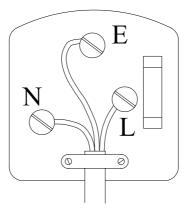
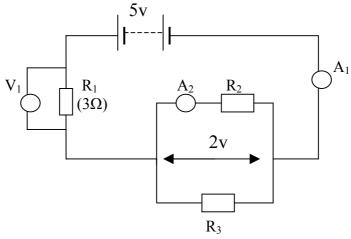

SECONDARY SCHOOLS ANNUAL EXAMINATIONS 2005 Educational Assessment Unit – Education Division


FORM 4	PHYSICS	Time: 1 hr. 30 min.
NAME:		CLASS
		<u>-</u>
Where necessary take the	swer all the questions in the spaces provided on the Exam Paper. working must be shown. The use of a calculator is allowed. here necessary take the acceleration due to gravity, g = 10m/s² to may find some of these formulae useful ssure = force/area	
You may find some of the	se formulae useful	
Pressure = force/area	Force = mass	s x acceleration
P = IV	Voltage rise	= total voltage drop
V = IR	Energy = pov	wer x time
•	Т	Time taken
-	-	s provided.
A force is a push or a pul acts on an object, the object	l. It is measured in et accelerates. If a force ee of When on a moving object is	The force that the Earth exerts on an This force produces an nen an object moves with a constant
		5 marks

- 1 - 1/8

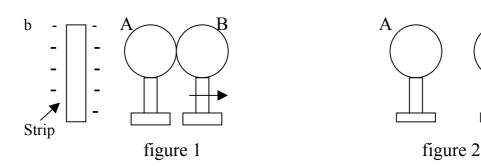
A student wants to find the specific heat capacity of water using an electric kettle. She fills it with water and connects it to a joulemeter connected to the electrical supply.


a	Complete:	
i	To find the mass of the water she can use a	1 mark
ii	She can find the temperature of the water by using a	1 mark
b i	Before starting heating, the water's temperature is 20°C. Why is it not 0°C?	
		1 mark
ii	She heats the water to 100°C. The temperature rise is°C	1 mark
iii	At 100°C the water normally	1 mark
c	In the experiment, the mass of the water was 1.5kg and the heat energy supplie $5.4 \times 10^5 \text{ J}$ (540 000J).	d was
i	Calculate the specific heat capacity of water.	
		_ 3 mark
ii	Give one reason why your answer is different form the correct value of 4200J/k	kg°C.
		1 mark
iii	State one way of improving the accuracy of the experiment.	
		1 mark


The figure represents a simple hydraulic jack. The pistons may be considered weightless and frictionless. A mass of 1kg is placed on the small piston A. The cross-sectional area of A is 1cm^2 while that of B is 200cm^2

ai	Calculate the force acting on piston A	_1 mark
ii	Calculate the pressure on the liquid in N/cm ² just under piston A.	
		2 marks
bi	What property of liquids is responsible for transferring this pressure from piston	A to B?
		2 marks
ii	Would the pressure in B be different if the connecting tube were wider?	1 mark
iii	Why is the reservoir important?	
		2 marks
iv	Calculate the maximum load in N that can be raised by this jack?	
		2 marks

3/8



	The cable used to connect a fan heater to the mains is made of copper and pla	actic
	The cable used to connect a fair heater to the mains is made of copper and pro	istic.
a	Which of the two, copper or plastic, is the electrical conductor?	1 mark
b	The cable was connected to a 3-pin plug fitted with a fuse. The cable had 3 covered wires, one coloured yellow and green, one brown while the third on Each was connected to one of the three pins labelled L, N and E.	
	Complete: L means and the colour of the wire is N means and the colour of the wire is E means and the colour of the wire is	3 marks
c	When the fan heater is 'on' it uses a current of 10A from the 230V mains su	pply.
i	Of the 3 fuses available, 5A, 10A and 13A which is a suitable one?	1 mark
	Calculate the power of the heater:	
ii	In watts (W)	1 mark
iii	in kilowatts (kW)	1 mark
d	The heater is switched on for 3 hours daily for 7 days.	
i	How many kWh has the heater used?	
		2 marks
ii	If electrical energy costs 5c every kWh, what is the total cost of switching on for 7 days?	the heater
		1 mark

a	Complete:	
i ii	Resistor R_1 is connected in, while R_2 and R_3 are connected in	2 marks
11	white K2 and K3 are connected in	Z marks
b	The voltage drop across R_2 and R_3 is $2v$.	
i	Calculate the voltmeter reading V_1 .	
		2 marks
ii	If the resistance of R_1 is 3Ω calculate the current flowing through R_1	
		2 marks
iii	The resistance of R_2 is 6Ω . Calculate the reading of ammeter A_2 .	
		2 marks
ci	To the above circuit add a switch labelled S_1 so that all the three bulbs can be on or off at the same time.	switched 1 mark
ii	The batteries normally used in such circuits are not environmentally friendly.	Why?
		1 mark
6	a When a polythene strip is rubbed with a d cloth, both the polythene and cloth become charged because electrons are being trans	ne
	On the above diagram:	
	i Mark + and – to show the charge on the	e cloth
	and on the polythene. 2	marks
	POLYTHENE ii Draw an arrow to show the direction in	which
		mark

An insulated copper strip was charged by rubbing. The charged copper and polythene strips were then earthed. Only the copper strip lost its charge. Which of the two strips was:

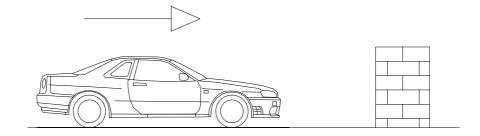
The above method shows one way of charging 2 insulated metal spheres, by separation. The strip is <u>negatively</u> charged.

i Mark the charges on A and B in figure 1.

2 marks

- ii Underline the correct phrase in the brackets:

 The charge on sphere A is (greater than, equal to, smaller than) the charge on sphere B.

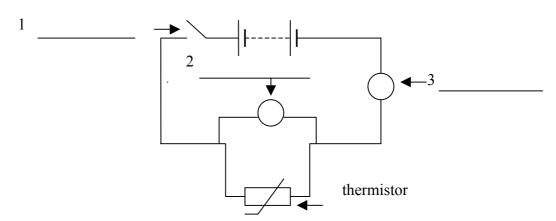

 1 mark
- iii Sphere B was momentarily earthed. <u>First</u> the earth connection <u>and then</u> the strip was removed. Then sphere B was separated from sphere A.

 Mark the charges on spheres A and B in figure 2 2 marks

Section B Answer all questions on the exam paper. Each question carries 15 marks.

7 This question is about momentum and passenger safety in cars.

Two students wanted to test the safety of cars. They force a toy car of mass 1kg travelling at 5m/s to crash into a wall and found that it took 0.01s to stop after hitting the wall.



After the crash, the final velocity of the toy car is	2 marks
The momentum of the car just before the crash is	
TTI	2 marks
The momentum of the car after the crash is	_ 2 marks
The change in momentum is	2 marks
During the crash a force appears. What object is causing this force?	1 mark
Now they attach a piece of plasticene to the front of the car and the the car takes longer to stop as the plasticene gets squeezed betwee the wall.	
Underline the correct word or phrase in the brackets: If the time of stopping the car increases, the force acting (against, i the moving car (increases, decreases) and the damage will be (great So the driver and passengers will be (more, less) safe in cars which stop during a crash.	ter, less).
Name a feature in cars that ensures better safety for the driver and p	passengers. 2 marks
This question is about designing an experiment.	
Two students want to investigate whether the outer colour of a cont the radiant heat entering it. They fill two identical copper container with the same mass of tap water. They paint one container dark brothey polish theother one. They place the two containers in front of heater which emits radiant heat.	rs each filled own while
Complete: The two measuring instruments they need during the ex and	periment are: 4 marks
Draw a diagram of the apparatus during the experiment in the space	below.
	3 marks
Name the two quantities they need to measure during the experime and	ent: 2 marks
Name one precaution they should take to be more accurate.	
1	2 marks
Which container will heat up first?	2 marks
Why?	2 marks
· · · · · · · · · · · · · · · · · · ·	

- 7 - 7/8

9 This question is about a component whose resistance changes with temperature. This tiny component is called a thermistor.

In an experiment to calculate the resistance of a thermistor, two students used the following apparatus.

ai Label the items marked 1, 2, and 3.

3 marks

They want to heat the thermistor to 50°C. Underline the method they should use: they heat it with a burner OR place it in water and heat the water.

1 mark

- iii To be sure the thermistor's temperature is actually 50°C they should use a 1 mark
- To calculate the resistance of the thermistor they should take the following readings:

 and

 and

 mark
- b In doing the above experiment they obtained the following readings:

Resistance R/	900	730	600	490	410	340	290	240	180
Temperature θ/°	C 15	20	25	30	35	40	45	50	60

i Plot a graph of resistance on the y-axis against temperature on the x-axis. You are advised to use the following scale:

y-axis: 1 cm to represent 50Ω

x-axis: 1 cm to represent 5°C

6 marks

- ii Use your graph to find the resistance of the thermistor when its temperature is 55°C 1 mark
- iii Complete: The resistance of the above thermistor when its temperature increases

1 mark