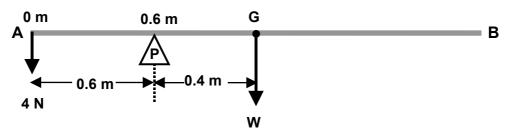
SECONDARY SCHOOL ANNUAL EXAMINATIONS 2005

Educational Assessment Unit - Education Division

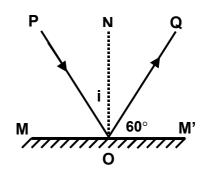
FORM 3	PHYSICS	TIME:	1h 30min
Name:		Clas	ss:
Answer ALL questions in the All working must be shown. Where necessary take acce	The use of a calcu	ulator is allowed	
You may find some of these			
area of triangle = base x height 2	area of trapezium	$\frac{h}{2}$ (sum of the p	parallel sides)
volume = length x breadth x h	neight		
v = s/t $v = u + at$ s	$= at^2/2$ W = m	g density = r	mass/volume
work done = F s PE = m	ngh Power	= work done time	$KE = \frac{mv^2}{2}$
moment of a force = force x per	rpendicular distance		
magnification = height of image height of object	= image distance object distance		
refractive index of glass = speed speed	d of light in air d of light in glass		
frequency = $\frac{\text{number of waves}}{\text{time}}$ v = f λ			

1

1


1 1 1

1. Complete the following table as shown in part (a).


No.	Physical Quantity	S. I. Symbol	S. I. Unit
а	time	t	S
b	focal length	f	
С	force	F	
d	potential energy	PE	
е	initial velocity	u	
f	power	Р	

a.	The apparatus required to measure the length of your room is a
b.	The of some wine can be found using a
	measuring cylinder.
C.	The time taken for Martha to complete a 100 m race can be
	measured using a
d.	The weight of some flour can be found using a
e.	The mass of a bag of apples is 2500 g.
	Its mass in kilograms is kg.
f.	Joseph takes 4 minutes to travel on foot from his home to school.
	The time in seconds iss.
g.	A plastic water pipe is 350 cm long.
	Its length in metres is m

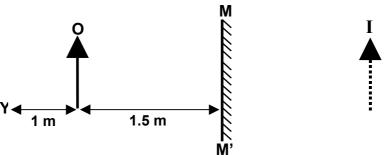
3. A uniform metal ruler AB is balanced at the 0.6 m mark when a load of 4 N is placed at the 0 m mark.

- **a.** Point **G** on the ruler is the ______ of the ruler.
- b. Support P is called a ______.
- c. Calculate:
- i. the **length** of the ruler AB,
- ii. the weight **W** of the ruler AB,
- iii. the **total force** supported by the support P,
- iv the reaction at the support P
- **d.** State the direction of the:
- i. direction of the **total force** acting on the support P, _____
- ii. direction of the **reaction** at the support P. ______
- **4. a.** The figure represents a ray of light striking and being reflected by a plane mirror MM'.
 - i. PO is the _____ray.
 - ii. is the reflected ray.
 - iii. NO is the ______.
 - iv. Angle i is the angle of _____.
 - **v.** The angle of reflection $r = \underline{\hspace{1cm}}^{\circ}$.

1

1

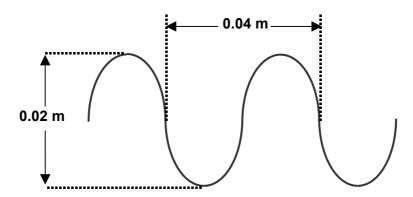
1


1

1

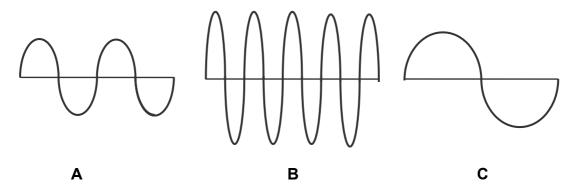
1

1


4. b. The figure shows an object O placed 1.5 m away from a plane mirror MM', and its image I appearing inside the mirror. An observer Y is 1 m away from the object O as shown.

	i.	The distance between the object \mathbf{O} and the image $\mathbf{I} = \underline{\hspace{1cm}} \mathbf{m}$.
	ii.	The distance of the observer Y from the mirror MM' = m.
	iii.	The image I appears to be m behind the mirror.
	iv.	The distance between the observer Y and the image I = m.
	٧.	The distance between the observer Y and his image = m.
5.	a.	Tommy lifts a bucket containing 3 kg of water from a well. The mass
		of the empty bucket is 1.0 kg. Calculate:
	i.	the weight of the empty bucket,

- ii. the weight of the water in the bucket,
 iii. the total mass of the bucket and the water,
 iv. the total weight of the bucket and the water.
- 5. b. Tommy takes 50 s to raise the bucket and the water through a height of 5 m from the surface of the water to the top of the well. Calculate:
 i. the work done by Tommy in lifting the bucket and the water,
 ii. The power built up by Tommy while carrying out this work.
 - iii. The **potential energy** gained by the bucket and the water at the top of the well.


6. a. The figure below represents water waves obtained in a large ripple tank.

i.	Mark a crest	: by the letter	'C' on	the wave	diagram
----	--------------	-----------------	---------------	----------	---------

- ii. Mark a **trough** by the letter 'T' on the wave diagram.
- iii. A water wave is a _____ wave.
- iv. The amplitude of the water wave is _____ m.
- v. The wavelength of the wave is _____ m.

6. b. The wave diagrams represent sound waves A, B and C travelling through **the air** during 0.04 s.

- i. The note of lowest frequency is given by sound wave _____.
- ii. The loudest note is produced by sound wave _____.
- **iii.** Calculate the frequency of the note represented by sound wave A.

6. c. The velocity of both transverse waves and longitudinal waves depends **only** on the ______ through which the waves travel.

1

1

2

1

1

1

Section B: Answer all questions in the spaces provided.

45 marks

1. The following table shows how the velocity **v** of a truck changes with time **t**.

Ī	v / m/s	0	4	8	12	16	20	24	24	12	0
	t/s	0	1	2	3	4	5	6	7	8	9

a. Plot a graph of velocity \mathbf{v} (y-axis) against the time \mathbf{t} (x-axis) on the graph paper provided.

7

1

1

1

1

1

1

1

b.	From your	graph:
ν.	i i oiii youi	grupiii

i. The truck accelerates uniformly for _____ s.

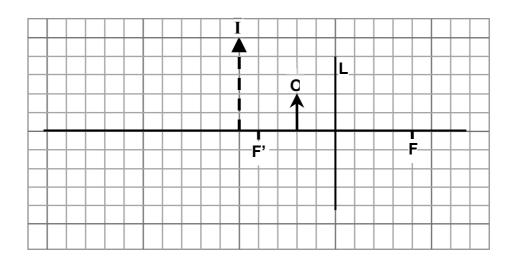
ii. The truck travels with uniform _____ for 1 s.

iii. The truck decelerates uniformly during the last _____ s of its journey.

iv. The total time taken by the truck to cover the whole journey is _____ s.

, , , ____

c. From your graph:


i. The velocity of the truck after 5 s is _____ m/s

ii. The velocity of the truck after 2.5 s is _____ m/s

iii. The truck reaches a velocity of 16 m/s after _____ s.

iv. The truck reaches a velocity of 18 m/s after _____ s.

Note: 1 small square represents 1 cm.

i.	The object distance is	cm.

- ii. The image distance is _____ cm.
- iii. The height of the object **O** is _____ cm.
- iv. The height of the image I is _____ cm.
- v. Calculate the magnification produced by the converging lens L.

- **vi.** The image is ______, ____ and _____.
- vii. The focal length of the lens L is ____ cm

b. **i.** The refractive index of diamond is 2.50. This means that the speed of light in air is _____ times the speed of light in

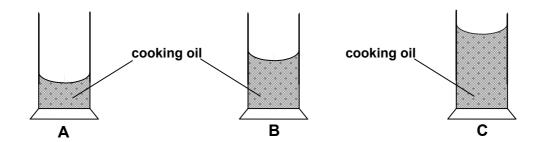
ii. Calculate the speed of light in diamond given that the speed of light in air is 3×10^8 m/s (300 000 000 m/s).

1

1

1

1


2

3

2

2

3. Figures A, B and C below show three measuring cylinders containing different amounts (masses) of the same kind of cooking oil. The mass of each measuring cylinder when empty is 70 grams.

- **a.** You are asked to carry out an experiment to find out whether the density of cooking oil depends on its mass.
 - i. What is the additional apparatus you require to carry out your investigation?
 - ii. State the two measurements you require to find the density of cooking oil.
 - **iii.** Complete the headings and the missing values of the following table:

Measuring Cylinder			density in
	in grams	in cm³	
Α	9.2	10	0.920
В	18.4	20	
С	27.6	30	

- **iv.** Do you expect different values for the density of cooking oil in the three measuring cylinders? _____
- **b.** Martha buys a bottle of cooking oil from the supermarket. The density of the cooking oil is 920 kg/m³. Calculate:
 - i. the mass of cooking oil in a fully-filled bottle of volume 0.001 m³,
 - ii. the weight of the cooking oil in the bottle,

2

2

5

1

3