
## **SECONDARY SCHOOL ANNUAL EXAMINATIONS 2003**

**Educational Assessment Unit – Education Division** 

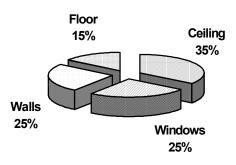
| FORM 4                                                        | PHYSICS                 | TIME: 1 hr 30 min                                                                    |
|---------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------|
| NAME:                                                         |                         | CLASS:                                                                               |
|                                                               |                         | 3 in the spaces provided on the n. The use of a calculator is                        |
| Where necessary take the ac                                   | celeration due to gravi | ty, g = 10 m/s <sup>2</sup> .                                                        |
| You may find some of these t                                  | formulae useful.        |                                                                                      |
| Pressure = force                                              | e / area Force = m      | nass x acceleration                                                                  |
|                                                               | $a = \frac{v - u}{t}$   |                                                                                      |
| Heat energy = mass x V = I R P = V I  Section A: Answer ALL C | Charge = Curren         | y x temperature change at x time Energy = I V t  tion in the spaces provided.        |
| 1. (a) In solids, <b>pressure</b> de                          | epends on               | and [2]                                                                              |
| (b)                                                           | pressure on y           | do a handstand, the<br>your hands is greater than<br>on your feet when you<br>. Why? |
|                                                               |                         | [2]                                                                                  |
| (ii) The wind pressu<br>of 6m <sup>2</sup> , what is th       |                         | a. If the wall has an area [3]                                                       |

2.



| (a) What type of meter is Y?                           | [1 |
|--------------------------------------------------------|----|
| (b) What is the reading on meter Y?                    | [1 |
| (c) How much charge passes through lamp A in 1 second? | [2 |
| (d) How much energy is radiated from A every second?   | [2 |




A sports car of mass 1500kg can accelerate from rest to 20m/s in 4s.

[2]

(a) Calculate its acceleration.

| (b) Calculate the force needed to produce this acceleration.                       |
|------------------------------------------------------------------------------------|
| (c) A driver finds difficulty to drive a car when the ground is covered wice. Why? |
| (d) Why is it important to wear a seat belt when driving a car?                    |
| (e) Streamlining a car reduces fuel consumption. Why?                              |

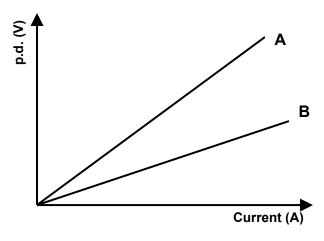
| 4. | Trolley X of mass 2 kg moving at a steady speed of 2.5 m/s collides and couples with trolley Y of mass 3 kg.                                         |     |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|    | (a) Find the <b>momentum</b> of trolley X <b>before</b> collision.                                                                                   |     |  |
|    |                                                                                                                                                      | [2] |  |
|    | (b) If trolley Y was stationary, what is the <b>final</b> velocity of the two trolleys <b>after</b> collision?                                       |     |  |
|    |                                                                                                                                                      |     |  |
|    |                                                                                                                                                      | [3] |  |
| 5. | This question is about <b>Heat Transfer</b> .                                                                                                        |     |  |
|    | (a) (i) Heat travels through solids by                                                                                                               | [1] |  |
|    | (ii) Heat travels through liquids by                                                                                                                 | [1] |  |
|    | (iii) Heat travels through gases by                                                                                                                  | [1] |  |
|    | (b) Some houses in Malta and Gozo are not insulated and lose heat in<br>several ways. It is found that heat is lost according to the chart<br>below: |     |  |



| (i) Which part of the house needs most insulation? |                                            |    |
|----------------------------------------------------|--------------------------------------------|----|
| (ii) Suggest ho                                    | w each part of the house can be insulated. |    |
| Ceiling                                            |                                            | [1 |
| Walls                                              |                                            | [1 |
| Windows                                            |                                            | [1 |
| Floor                                              |                                            | [1 |

| 6. An | electric oven is connected to the mains supply.                                                                                                     |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| (a    | How much power does the oven use when it takes a current of 10A at 240V?                                                                            |
| (b    | How many kilowatt-hours would it use in three hours?                                                                                                |
| `     |                                                                                                                                                     |
| (c)   | Each unit of electricity costs 4c. Find the total cost after three hours.                                                                           |
| (d    | Which <b>one</b> of the following fuses would you choose for the 3-pin plug fitted with this oven?  3A 5A 13A                                       |
|       | SA SA ISA                                                                                                                                           |
|       | an experiment to find the specific heat capacity, a student heated 500g water from 22°C to 32°C.                                                    |
| (a    | The mass of water in <b>kg</b> is                                                                                                                   |
| (b    | The temperature <b>rise</b> is                                                                                                                      |
| (c)   | If the specific heat capacity of water is 4200 J/kg°C, the <b>heat energy</b> used is                                                               |
| (d    | The student used a stopwatch to record the time during which an immersion heater of 500 W was switched on. For how long was the heater switched on? |
|       |                                                                                                                                                     |
| 8. (a | When a toy gun is fired, it exerts a forward force on the rubber bullet. Why does the toy gun recoil backwards?                                     |
| (b    | Mark on the diagram                                                                                                                                 |
|       | (i) the direction of the force <b>A</b> on the rubber bullet                                                                                        |
|       | (i) the direction of the force <b>A</b> on the rabbel ballet                                                                                        |

## Section B: Answer ALL Questions in this section in the spaces provided. This section carries 45 marks.

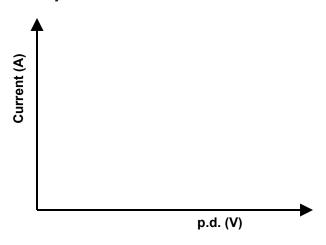

| 9. | This  | question is about <b>electric charge</b> .                                                                                                                                       |     |  |
|----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|    | (a)   | When Paul pulls a plastic comb through his hair, the comb becomes negatively charged.  (i) Which ends up with more electrons tha normal: the <b>comb</b> or <b>Paul's hair</b> ? | [2] |  |
|    |       | (ii) Why does Paul's hair become positively charged?                                                                                                                             | [2] |  |
|    | (b)   | Give ONE example of where electrostatic charge might be useful.                                                                                                                  |     |  |
|    | (c)   | Paul holds a positively charged rod close to a metal can. The can is on an insulated stand.  Can  Rod                                                                            |     |  |
|    | (i)   | Draw on the diagram above any induced charges on the can.                                                                                                                        | [4] |  |
|    | (ii)  | Why is the can attracted to the rod even though the overall charge on the can is zero?                                                                                           | [2] |  |
|    | (iii) | If Paul touches the can with his finger, electrons flow through his hand. Show the charge flow while Paul is touching the can.                                                   | [2] |  |
|    | (iv)  | What charge ( <b>positive</b> or <b>negative</b> ) is left on the can after Paul touches the can?                                                                                | [1] |  |
|    |       |                                                                                                                                                                                  | [ו] |  |

| 10. This question is about resistance. (a) When a kettle is plugged into the 240V mains supply, the current through its element is 10 A. What is the resistance of its element? |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                                                 | [2] |

(b) Diode, Light Dependent Resistor (LDR), Thermistor and Variable Resistor are <u>four</u> types of resistance components. Which of these four resistance components do you require to obtain the following results? In each case write down the name of the component AND draw the symbol used.

| Function                                                                                                      | Type of resistance component | Symbol |     |
|---------------------------------------------------------------------------------------------------------------|------------------------------|--------|-----|
| (i) A component that controls the brightness of a bulb.                                                       |                              |        | [2] |
| (ii) A component that may<br>be used in an electrical<br>thermometer to detect<br>temperature change.         |                              |        | [2] |
| (iii) A component used in electronic circuits that switches lights on and off automatically.                  |                              |        | [2] |
| (iv) A component used in<br>an electronic circuit<br>that allows current to<br>flow in one direction<br>only. |                              |        | [2] |

(c) The lines A and B on the following graph are for two different conductors.




(i) Do you think that these conductors obey Ohm's Law? Explain why.

(ii) Which of the two conductors (A OR B) has the lower resistance?

\_\_\_\_\_\_[1]

(iii) If a tungsten filament is used sketch a graph (current against p.d.) that may be obtained.



[2]

[2]

11.



A skydiver jumps out from an aeroplane. The following readings of the skydiver's velocity (in  $\mathbf{m/s}$ ) against time (in  $\mathbf{s}$ ) are recorded

| Velocity (m/s) | Time (s) |
|----------------|----------|
| 0              | 0        |
| 9.0            | 2        |
| 19.0           | 4        |
| 27.5           | 6        |
| 35.0           | 8        |
| 43.0           | 10       |
| 50.0           | 12       |
| 54.5           | 14       |
| 58.5           | 16       |
| 60.0           | 18       |
| 60.0           | 20       |

| (a) Pl | lot a graph of velocity (on the <b>y-axis</b> ) against time (on the <b>x-axis</b> ). | [6] |
|--------|---------------------------------------------------------------------------------------|-----|
| (b) Fi | ind the terminal velocity of the skydiver.                                            | [1] |
| (c) Fr | rom the graph, find the velocity of the skydiver after (i) 5s and (ii) 11s.           |     |
| (i)    | ) (ii)                                                                                | [2] |

| jumping<br>force n   | cydiver opens<br>g out of the acting on<br>e skydiver's s | eroplane. [<br>the skydi | Describe th | e extra   |              |
|----------------------|-----------------------------------------------------------|--------------------------|-------------|-----------|--------------|
| (e) Will the answer. | skydiver re                                               | ach a nev                | v terminal  | velocity? | Explain your |