SECONDARY SCHOOLS ANNUAL EXAMINATIONS 2000 Educational Assessment Unit - Education Division

	14	PHYSICS	TIME: 1 hr 30 min
NAME	:		CLASS:
	•	spaces provided on the line use of a calculator is	· · · · · · · · · · · · · · · · · · ·
Where	e necessary take the ac	celeration due to gravity,	$g = 10 \text{ m/s}^2$.
You n	nay find some of these for	mulae useful.	
area o	of triangle = base x height	area of trapezium =	h (sum of parallel sides)
v = <u>s</u>	v = u + at s	$= \underline{at^2}$ W = mg	F = ma
}	entum = mass x velocity	-	$P = h \rho g$
heat e	energy = mass x specific h	eat capacity x temperature cl	nange
V = 1	$R \qquad P = VI = I^2R$	$R = R_1 + R_2 + R_3$	$R = \frac{R_1 R_2}{R_1 + R_2}$
0.2	2 m high. Calculate the cross-se		1 m long, 0.1 m wide and
b.	What is the total area	of the sofa in contact wit	h the floor?
C.	What is the total weigh 500 N, sits on the sofa	nt acting on the floor whe	n David, who weighs
	The size of the process	re caused by the sofa on	
d.	i.		the floor depends on:
d.	:		the floor depends on:

. 8	а.	The temperature of some water in a beaker is measured by a
t	٥.	The temperature at which pure water normally boils is°C.
Ċ	٥.	The heat energy required to change ice at 0°C to water at 0°C is called
Ć	d.	Heat energy travels through water by a process called
e.	€.	The diagram shows heat being supplied at the top of the beaker containing an ice-water mixture.
		heat water boiling at the surface wire gauze ice at the bottom of the beaker stand
		Why is the wire gauze inside the beaker required? Explain your answer.
		ii. Explain why the ice trapped at the bottom of the tube takes a long time to melt although the water at the top is boiling.
		iii. Mark on the diagram using the letter H , the correct position of the burner such that all the ice-water mixture in the beaker boils.

		cker-timer has an operating frequency of 50 Hz. This means that:	
	i. 7	The timer makes 50 spaces in s	
	ii.	The time in seconds represented by one space =s.	
	iii.	The time in seconds represented by 10 spaces = s.	
	aco	e diagram below represents a section of tape obtained when a trolley celerates down an inclined runway.	
	L	• • • • M	
	:	10 cm 8 cm 6 cm 4 cm 2 cm	
	April 1	35 cm	
	į.	The tape is attached to the trolley from end	
	ii.	The total distance between the first dot and the last dot is cm.	
	· iii.	Calculate the total time in seconds to cover this distance.	
	iv.		
		Calculate the average velocity of the trolley in cm/s as it travels down the runway.	
. a.			
a	ii.	Two similarly charged objects each other .	
a.	ii. iii.	Two similarly charged objects each other . Two charged objects attract each other. Neutral [or uncharged] objects are by both	
a.	ii. iii.	Two similarly charged objects each other . Two charged objects attract each other. Neutral [or uncharged] objects are by both positively and negatively charged objects. The size [magnitude] of the force of attraction or repulsion between	

4. b. Two metal spheres R and S on insulating stands are charged as shown.

- i. Spheres R and S are equally but _____ charged. [1]
 ii. Charge Q is measured in ____. [1]
 iii. What happens in terms of electron flow when sphere R is connected to earth? [2]
 iv. What happens when sphere S is connected to earth?
- 5. The diagram shows a power ring circuit diagram and an unconnected 13-A socket.

- a. i. Wire ____ is the live wire and its colour is ____. [2]

 ii Wire H is the ____ wire and its colour is yellow-green. [1]
- b. Complete the circuit diagram by completing the missing socket connections to the circuit.

[2]

[1]

6. The diagram below shows the forces acting on an aeroplane of mass 80 000 kg which is flying at a constant height.

	P	
a.	What are the forces labelled P and Q?	[2]
b.	What can be said about the size of the engine force and the force Q when the aeroplane needs to accelerate forward?	[1]
C.	What is the weight of the aeroplane in newtons?	w.
		[2]
d.	What is the size of the lift force when the aeroplane is travelling at constant height? Explain your answer.	···
e.	What is the total resultant force acting on the aeroplane when it is travelling at constant velocity at constant height?.	~ [2]
		f.~1
f.	The diagram below shows a fast military aircraft using a braking parachute on landing to help it slow down on the runway.	

Which force does this parachute increase to help to slow down the aircraft?				
	page 5			

Section B. Answer All Questions. This Section carries 45 marks.

1. This question is about electric circuits .

The circuit diagram below shows two resistors R_1 and R_2 connected to a 12-volt battery.

a.	Resistors R ₁ and R ₂ are connected in					
b.	Is the current flowing through R_2 bigger, smaller or equal to the current flowing through R_1 ?					
C.	i.	What meter do you require to find the current flowing through the circuit?	[2]			
	ii.	Using the appropriate symbol, draw on the circuit diagram above, the position of this meter in order to find the current flowing through the circuit.	[2]			
d.	i.	What meter do you require to find the potential difference across R ₁ ?	[2]			
	ii.	Using the appropriate symbol, draw on the circuit diagram above, the position of this meter in order to find the potential difference across R ₁ .	[2]			
	iii.	The potential difference across R_1 is 8 V. Therefore, the potential difference across R_2 is V.	[2]			
e.	Ca	alculate:				
	i.	The total resistance of the above circuit.	[1]			
	ii.	The current flowing through the circuit.				
			[2]			

2 This question is about the design of an experiment.

Maria carries out an experiment to compare the temperature rise of a mass of water using five immersion heaters of power ratings: 10 W, 20 W, 30 W, 40 W and 50 W.

Maria records the rise in temperature of the water caused by each heater when switched on for 3 minutes.

a. Fill in the missing labels in the diagram of the experimental set-up used by Maria.

3. This question is about force and acceleration.

Two students set up an experiment using a tickertape timer and a runway to show how the acceleration of a trolley depends on the applied force. They obtain the following results.

Force /N	0	2	4	6	8
acceleration /m/s ²	0	2.5	5.0	7.5	10.0

Plot a graph of acceleration [y-axis] against the applied force [x-axis] on the graph paper provided.	[7]
From the graph find: i. the acceleration produced when the applied force is 5 N,	··· [2]
ii. the force required to produce an acceleration of 3.5 m/s ² .	··· [2]
The two students conclude that the acceleration produced is directly proportional to the applied force. i. Do you agree with this conclusion?	[2]
ii. Give a reason for your answer.	. [2]
	the graph paper provided. From the graph find: i. the acceleration produced when the applied force is 5 N, ii. the force required to produce an acceleration of 3.5 m/s². The two students conclude that the acceleration produced is directly proportional to the applied force. i. Do you agree with this conclusion?