FOR OFFICIAL USE			

	KU	PS
Total Mark		

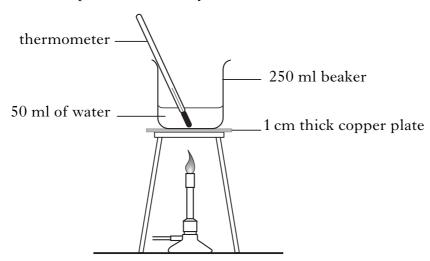
3700/403

NATIONAL QUALIFICATIONS 2007 MONDAY, 21 MAY 1.00 PM - 2.30 PM SCIENCE STANDARD GRADE Credit Level

Fill in these boxes and read what is printed below.	
Full name of centre	Town
Forename(s)	Surname
Date of birth Day Month Year Scottish candidate number	Number of seat
1 Answer as many questions as you can.	
2 Read the whole of each question carefully before yo	u answer it.
3 Write your answers in the spaces provided. Showin	g working may help in some questions.
4 Before leaving the examination room you must give not, you may lose all the marks for this paper.	e this book to the invigilator. If you do

		Marks	KU	PS
1.	Complete the following sentences about electrical appliances.			
	(Circle) the correct word in each box.			
	earth			
	The switch is connected to the live wire.	1		
	neutral			
	earth			
		1		
	The fuse is connected to the live wire.	1		
	neutral			
	earth			
	The live wire is connected to the metal casing of an appliance.	1		
	neutral			
2.	The boxes below show the names of some gases.			
	1 2 sulphur dioxide hydrogen 3 carbon monoxide			
	sulphur dioxide hydrogen carbon monoxide			
	4 5 6			
	nitrogen oxygen CFC			
	Which box shows			
	(a) a gas that causes acid rain pollution?			
		1		
	Box number	1		
	(b) the gas that is formed by incomplete combustion of fossil fuels?			
	Box number	1		

[3700/403] Page two


Marke	KU	PS

3. Gavin carried out an investigation to find out which metal is the Marks best conductor of heat energy.

He put 50 ml of water into a 250 ml beaker.

He placed the beaker on a 1 cm thick copper plate and noted the temperature of the water.

He then heated the water using a Bunsen burner and timed how long it took for the water temperature to rise by 2 °C.

He carried out further experiments using a 1 cm thick aluminium plate, and then a 1 cm thick steel plate.

Results

Metal	Time for a 2 °C temperature rise (s)
Copper	32
Aluminium	34
Steel	37

Although the investigation was **fair**, it could be **improved**.

Suggest **two** improvements to make the investigation more reliable and accurate.

1	
2	
_	

[Turn over

2

[3700/403] Page three

	n is an example of a fungus. a type of decomposer.		Marks	KU	P
(a) Name a	nother type of decomposer.				
			1		
(b) How do	decomposers get the energy the	ey need to live?			
			1		
Explain 					
		of electricity and gas for a hou	ise		
	elow shows the monthly costs of irst six months of a year. Monthly cost of electricity (£)	Monthly cost of gas	ase		
during the f	irst six months of a year. Monthly cost of electricity	Monthly cost of gas	ise		
Month	Monthly cost of electricity (£)	Monthly cost of gas	ase		
Month January February March	Monthly cost of electricity (£) 38.12 37.90 34.46	Monthly cost of gas (£) 68.70 69.04 47.32	ise		
Month January February March April	Monthly cost of electricity (£) 38.12 37.90 34.46 32.18	Monthly cost of gas (£) 68.70 69.04 47.32 38.24	ise		
Month January February March April May	Monthly cost of electricity (£) 38·12 37·90 34·46 32·18 31·48	Monthly cost of gas (£) 68.70 69.04 47.32 38.24 29.40	ise		
Month January February March April	Monthly cost of electricity (£) 38.12 37.90 34.46 32.18	Monthly cost of gas (£) 68.70 69.04 47.32 38.24	ise		
Month January February March April May June	Monthly cost of electricity (£) 38·12 37·90 34·46 32·18 31·48 30·46 e average monthly cost of gas for	Monthly cost of gas (£) 68.70 69.04 47.32 38.24 29.40 24.12			

[3700/403] Page four

PS

WRITE IN
THIS MARGIN

Marks

6. Use the information in the passage below to answer the questions.

Some athletes use the effects of high altitude on the human body to increase the oxygen-carrying efficiency of their circulatory system.

At high altitudes, the oxygen concentration in the air is lower than it is at In response to lower oxygen concentration, an athlete's sea level. breathing quickly becomes deeper and more rapid. This helps to maintain the oxygen level in the blood. The athlete's heart rate also increases quickly so that more oxygen is delivered to the muscles. These changes to the body wear off as soon as the athlete returns to lower altitude.

However, other changes to the body caused by high altitude happen more slowly and last longer. Erythropoietin is a hormone that stimulates the bone marrow to make red blood cells. When there is a fall in the oxygen level in the body, more erythropoietin is produced. This causes an increase in both haemoglobin and red blood cell production, allowing the blood to carry a lot more oxygen.

Hard physical exercise at high altitudes is very difficult. Blood becomes thicker, the body dehydrates, appetite and food intake drops and the body tires more quickly. Many athletes use a high altitude training programme designed to maximise the benefits of increased oxygen-carrying efficiency while minimising the difficulties of hard physical exercise at high altitudes. A well-designed training programme includes periods of exercise at lower altitude combined with periods of rest and sleep at higher altitude.

(a)	Give two changes to the body, which happen quickly in response to the lower oxygen concentration in the air at high altitudes.		
	1		
	2	2	
(b)	What does the body do to bring about the increase in haemoglobin and red blood cell production?		
		1	
(c)	Explain fully why a well-designed training programme does include sleeping but not exercising at high altitude.		
		2	
	[Turn over		

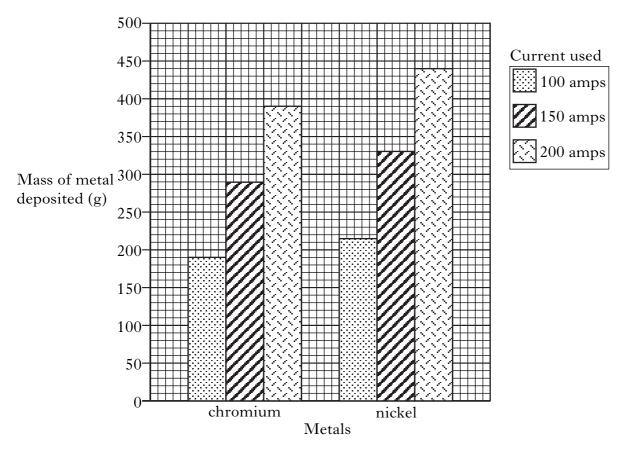
[3700/403] Page five

-	В. Л		1		Marks	KU	PS
7.			each property with rst one has been do	its correct description. ne for you)			
Pr	oper	ty		Description			
Tł	nerm	al c	onductivity	Ability to burn			
			Strength	Ability to bend without breaking			
	V	Wea	ar resistance	Ability to allow heat to flow through a material			
			Elasticity	Ability to stretch and then return to original shap	e		
			Hardness	Ability to resist damage caused by impact			
		Fl	ammability	Ability to support heavy loads without breaking			
			Flexibility	Ability to resist damage caused by rubbing	4		
0	- TO 1	"	1				
8.		_		auses global warming.			
	(a)		_	s the main cause of the "greenhouse effect"?			
		A	Carbon dioxide				
		В	Carbon monoxide				
		C	Sulphur dioxide				
		D	CFC				
		<u>Ur</u>	nderline the correc	t answer.	1		
	(b)		hich of these env	ironmental changes would result from global			
		A	Acid rain pollution	n			
		В	Melting of polar ic	ce			
		С	Destruction of tro	pical rainforests			
		D	Breakdown of the	ozone layer			
		<u>Ur</u>	nderline the correc	t answer.	1		

[3700/403] Page six

KU PS Marks 9. The diagram below shows part of a food web from the North Atlantic Ocean. seals salmon cod mackerel herring sand eels microscopic animals microscopic plants (a) This is a food chain from the food web. microscopic plants → microscopic animals → mackerel → seals (Circle) the correct word in each of the following sentences. At each step in this food chain, the amount of energy passed on increases decreases stays the same 1 Along a food chain, the concentration of a pollutant in the bodies of the organisms decreases stays the same increases 1 (b) These organisms are linked together in a much larger food web. What is the advantage of a food web having a large number of links? 1 [Turn over

[3700/403] Page seven


Marks KU PS
TYTUTNS

2

1

10. Electroplating is used to deposit a layer of one metal on top of another metal.

The bar graph shows the mass of chromium and nickel deposited in one hour using different electrical currents.

(a) Draw **two** conclusions from these results.

1	
2	

.....

(b) Predict the mass of nickel deposited when a current of 175 amps flows for one hour.

g	
3	

[3700/403] Page eight

PS

10. ((continued)
- 0. (COLLULIACA

Marks	KU

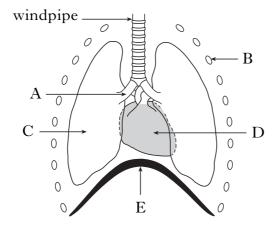
(c)	The	total	mass	of	metal	deposited	over	a	period	of	time	can	be
	calcu	ilated	using 1	the	formul	a below							

Total mass = mass deposited in one hour × time in hours

Use information from the graph and the formula to calculate the total mass of **chromium** deposited using a current of 150 amps for 2 hours.

Space for working

Answer g


2

1

1

1

11. The diagram below shows parts of the breathing system.

(a) Name structure A.

.....

(b) Name the structure which helps to keep the windpipe open.

.....

(c) Which **two** structures change the volume of the chest during breathing?

Letters and

[Turn over

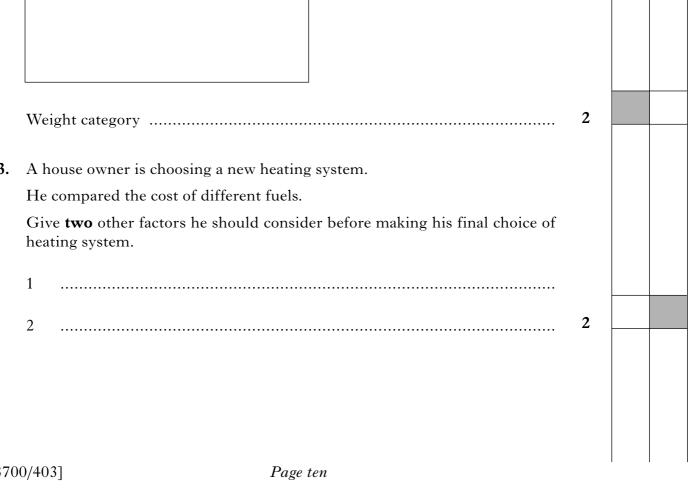
[3700/403] Page nine

	THIS M	IARGIN
Marks	KU	PS
IVIUIKS		

12. A person's Body Mass Index (BMI) can be used to determine their weight category. The table shows the weight category for different BMI values.

BMI	Weight Category
Below 20	underweight
20–25	ideal for height
26–30	overweight
31–40	obese
Over 40	very obese

BMI is calculated using the formula


$$BMI = \frac{body \text{ mass (kg)}}{height (m) \times height (m)}$$

Sian is 1.5 m in height and has a body mass of 54 kg.

What is her weight category?

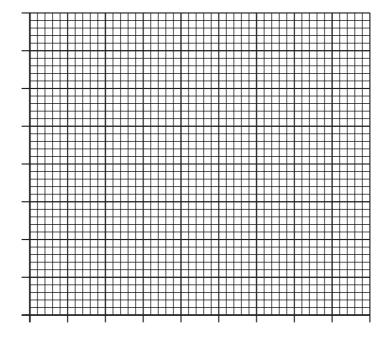
Space for working	

13.

Marks	KU	PS
IVIUINS		

1

14.



(a)	Give one example of how the effects of corrosion can add to the costs of a business.

(b) The table shows the mass of rust formed on iron plates immersed in different types of water at different temperatures.

Type of water	Mass of rust (g)		
Type of water	at 20 ° C	at 40 ° C	
distilled	0.8	1.3	
tap	2.2	3.7	
tap salty	4.8	$7 \cdot 2$	

Draw a **single** bar graph to show **all** of this information. (Additional graph paper, if required, is available on page 25)

3

[Turn over

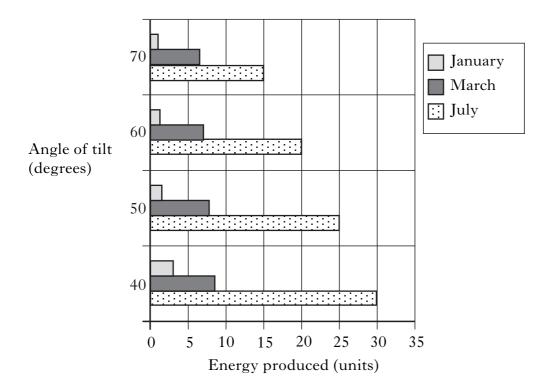
15. The table and chart show some information about penguins.

Type of penguin	Where it is found	Characteristic feature	Number of breeding pairs
Adelie	Antarctic mainland	white ring around eye	2 500 000
Macaroni	Antarctic islands	yellow and black crest on head	12 000 000
Chinstrap	Antarctic icebergs	black stripe under chin	13 000 000
Magellanic	Argentina, Chile	black stripe on belly and under chin	400 000
Emperor	Antarctic mainland	yellow chin	200 000
King	Antarctic islands	yellow chin	1 000 000
Rockhopper	Antarctic islands	black crest on head	500 000
Gentoo	Antarctic islands	white stripe on head	300 000
Little	New Zealand	white stripe around flipper	500 000

KU

Marks

15.	100	- + : -	ued
1.7.	10:0		uea


The chart shows the average length of the penguins.

Average length (cm)	140 120 100 80 60 40 20		
	Adelie Macaroni Chinstrap Chinstrap Emperor King Rockhopper Gentoo Little		
(a)	Where can the penguin with a population of 200 000 breeding pairs be found?		
(<i>b</i>)	What is the smallest type of penguin with a crest on its head?	1	
(c)	What is the average length and characteristic feature of the penguin with the largest number of breeding pairs?	1	
	Average length cm		
	Characteristic feature	1	
	[Turn over		

16. Harmful substances can en	ter the body through the lungs.	Marks	KU	PS
	ostance with its effect on the body.			
(The first one has been do	ne for you.)			
Harmful substance	Effect on the body			
solvent fumes	burns the lining of the lungs			
hydrogen chloride	reduces gas exchange in the air sacs			
nicotine	affects the nervous system			
carbon monoxide	is addictive			
tar	stops red blood cells carrying oxygen			
hydrogen cyanide	cause brain damage and organ failure	4		
, 0 ,				
17. The diagram below shows	two blood vessels			
17. The diagram below shows	thick muscular wall			
valve (a) (i) Name each type	of blood vessel.			
,				
Α				
В		1		
(ii) Explain why bloc	od vessel B has a thick muscular wall.			
		1		
		1		
(b) Explain how the structure between the blood and	ucture of capillaries allows exchange of gases the body cells.			
		4		
		1		

PS

		Marks	KU
18.	The graph below shows how the energy produced by a solar cell during	Warks	
	different months of the year changes as the solar cell is tilted to different		
	angles.		

(a`	Draw	two	conclusions	from	these	results
١	цu,	Diaw	two	Conclusions	110111	uicsc	i Courto.

1

.....

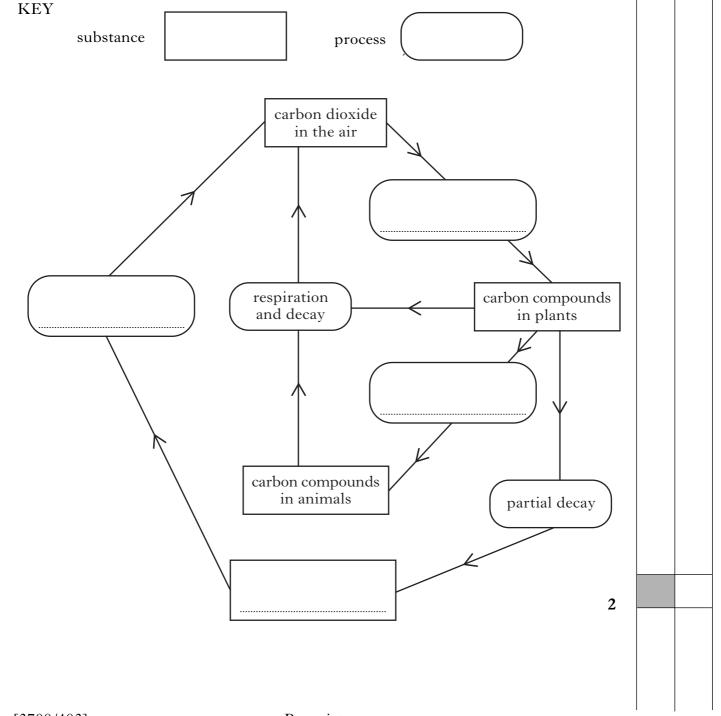
2

.....

(b) Predict how much energy could be produced by a solar cell tilted to 55 degrees during the month of July.

[Turn over

2


1

Marks KU PS

19. Use the information in the passage to complete the **flow diagram** below.

Carbon dioxide is present in the air. In the process of photosynthesis, plants take in carbon dioxide to make carbon compounds. By the process of digestion, animals take in carbon compounds from plants and convert them into other carbon compounds. Both plants and animals release carbon dioxide by the processes of respiration and decay. The carbon dioxide goes back into the air.

Plants which were growing millions of years ago took in carbon dioxide from the air. The plants were changed into coal by a process of partial decay. The process of burning coal releases carbon dioxide back into the air.

					WRI'	
• A manufacture appliances.	er has information	about different type	es of flex for electrical	Marks	KU	P
	aning of some elect	crical symbols or terr	ns.			
Symbol/term		Meaning				
	does not need an	earth wire.				
2 core flex	electric cable wh	ich has only a live w	ire and a neutral wire.			
3 core flex	electric cable wh	ich has earth, neutra	l and live wires.			
	Power rating (W)	Current (amps)				
	Less than 720	3				
	More than 720	13				
Table 3: Typ	Type of flex	rical appliances and	their specification.			
	A	2 core 3 amps				
	B C	2 core 13 amps 3 core 3 amps				
	D	3 core 13 amps				
The information	on plate found on a	television and an ir	on are shown below.			
E BEAB A	PPROVED	CE	SERIAL NO : 1481			
0-240 V ~50 Hz			·			
televis Circle the corre		nat type of flex shou	iron ıld be fitted to			
(a) the televisi	ion. A B (1		
(b) the iron.	A B (1		
			[Turn over			

[3700/403] $Page\ seventeen$

			Marks	KU	_
		mpany was looking for new oil fields.			
(a)	The	boxes below show different types of survey used to find oil.			
	1				
		aerial survey seismic survey			
	3	test drilling geological survey			
	(i)	Scientists surveyed types of rocks at the surface of the Earth. What type of survey was carried out?			
		What type of survey was carried out.			
		Box number	1		
	(ii)	A small explosion was set off and the echoes from the explosion were detected by geophones.	n		
		What type of survey was carried out?			
		Box number	1		
(<i>b</i>)	The	oil company extracted the crude oil from the ground.			
(0)		oil had to be separated into useful products.			
		ne the process used to separate crude oil into useful products.			
			1		_
					-1

22.	Dif	ferent methods of protecting materials against damage are shown below.	Marks	KU	PS
	V	vater-proofing painting electroplating anodising			
		pesticide treatment packaging galvanising			
	(a)	Which method would be most appropriate to protect the outer covering of a tent?			
			1		
	(b)	Which two methods would be most appropriate to protect the steel parts of a bridge?			
		and	1		
	(c)	Which method would be used to protect aluminium window frames?			
			1		
	(<i>d</i>)	Which method would be most appropriate for protecting wooden rafters against attack by woodworm?			
			1		
23.	(a)	Actinium-225 is a radioactive substance used in cancer treatment. It has a half-life of 10 days.			
		A sample of actinium-225 has an activity of 80 units. What would its activity be after 10 days?			
		units	1		
	(<i>b</i>)	Radioactive waste substances from nuclear power stations can have very long half-lives.			
		Explain why this causes problems for storing radioactive waste.			
			1		
		[Turn over			

		DO NO WRITE THIS MAI
24. The line alcohol.	graph shows how a man's reaction time is affected by drinking Marks	KU
Reaction time (hundredths of a second)	40 35 30 25 20 15 10 5 0 1 2 3 4 5 6 7 8	
	Units of alcohol consumed	
(a) (i)	Calculate the change in the man's reaction time when his alcohol	

consumption increased from 1 unit to 5 units.

Space for working	

...... hundredths of a second 1 Answer

24		,		Marks	KU	PS
24.	(a)	(con:	tinued) Calculate the percentage increase in the man's reaction time when his alcohol consumption increased from 1 unit to 3 units.			
			Space for working			
			Answer % increase	2		
	(<i>b</i>)		nking large quantities of alcohol over a long period of time increases rson's risk of	2		
		A	hypothermia and anorexia			
		В	liver damage and kidney damage			
		C	brain damage and bronchitis			
		D	kidney damage and lung cancer.			
		Und	lerline the correct answer.	1		
			[Turn over			

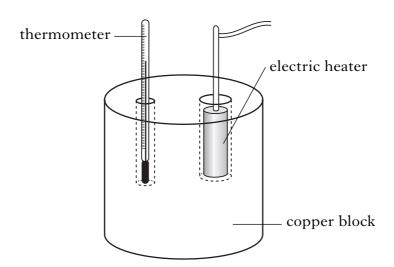
Page twenty-one

25. The energy needed to heat a metal block can be found from the formula

Marks KU PS

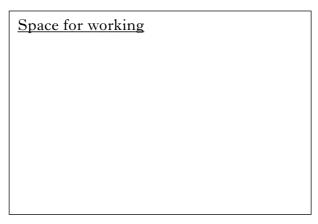
$$\mathbf{E} = \mathbf{c} \times \mathbf{m} \times \Delta \mathbf{T}$$

where


E is the energy needed (J)

c is the specific heat capacity of the metal block (J/kg/°C)

m is the mass of the metal block (kg)


ΔT is the temperature rise of the metal block (°C)

A pupil heated a 2 kg copper block with an electric heater.

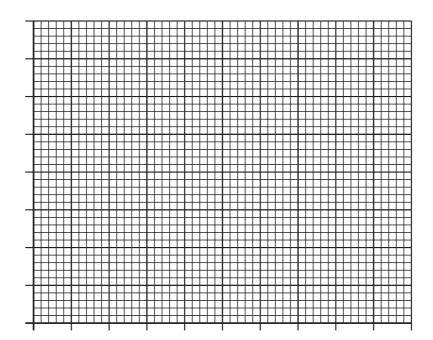
The temperature of the block at the start was $20\,^{\circ}$ C. After heating, the temperature of the block increased to $32\,^{\circ}$ C.

(a) Calculate the temperature rise, ΔT .

Answer °C 1

				т Т
The s		Marks	KU	_
The	specific heat capacity for copper is 380 J/kg/°C.			
(<i>b</i>)	Calculate the energy needed, E , to heat the block.			
	Space for working			
		Marks		
	Answer J	y for copper is 380 J/kg/°C. gy needed, E , to heat the block.		
	[Turn over	r		
		Marks KU Deer is 380 J/kg/°C. I, E, to heat the block. Answer		

26.	Plants need to obtain a certain mineral from the soil to grow strong roots.
	Two sets of plants were grown from seeds, one with the mineral and one
	without. The length of the plants roots was measured every five days and
	the average length was found.


Marks

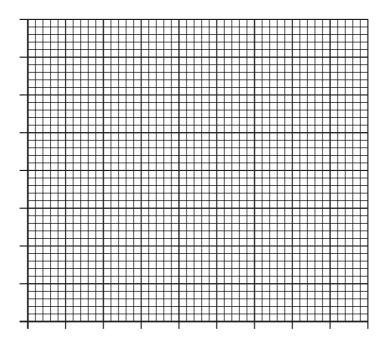
KU PS

The results are shown in the table.

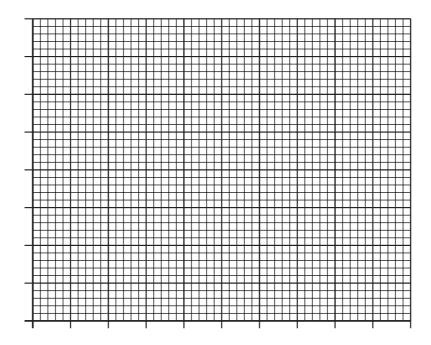
Day	Average length of plant roots (mm)		
J	with mineral	without mineral	
0	0	0	
5	16	8	
10	25	12	
15	32	14	
20	37	15	
25	39	16	

(*a*) Using the same axes, show these results as **two line** graphs. (Additional graph paper, if required, may be found on page 25)

3


2

Draw **two** conclusions from the results. (*b*)


[END OF QUESTION PAPER]

KU PS


ADDITIONAL GRAPH PAPER FOR USE IN QUESTION 14 (b)



ADDITIONAL GRAPH PAPER FOR USE IN QUESTION 26 (a)

