LI X043/301 6/670

| FOR OFFICIAL USE |  |  |
|------------------|--|--|
|                  |  |  |

# X043/301

NATIONAL QUALIFICATIONS 2007 THURSDAY, 24 MAY 1.00 PM - 3.30 PM

# GEOLOGY HIGHER

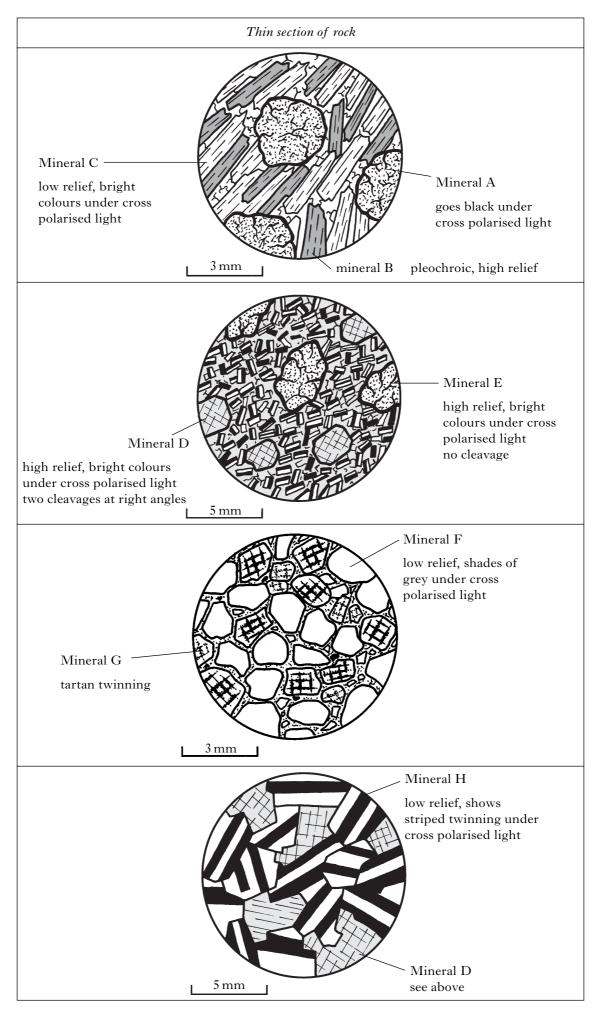
| Fill in these boxes and read what is printed below.                                                                                                                                                                         |                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Full name of centre                                                                                                                                                                                                         | Town                                            |
|                                                                                                                                                                                                                             |                                                 |
| Forename(s)                                                                                                                                                                                                                 | Surname                                         |
|                                                                                                                                                                                                                             |                                                 |
| Date of birth<br>Day Month Year Scottish candidate number                                                                                                                                                                   | Number of seat                                  |
| 1 This paper consists of three sections A, B and C. Y<br>on Section A, half an hour on Section B and 1 hour                                                                                                                 | •                                               |
| 2 You should attempt all of the questions in Sections A and                                                                                                                                                                 | nd C and only <b>one</b> question in Section B. |
| 3 All answers should be written in the spaces provide written clearly and legibly in ink.                                                                                                                                   | ed in this answer book and should be            |
| 4 The marks allocated to each question or part of a c question or part of a question.                                                                                                                                       | question are shown at the end of each           |
| 5 Additional space for answers or rough work will be f<br>space is required, supplementary sheets may be of<br>be inserted inside the <b>front</b> cover of this booklet. Yo<br>which you do not wish the examiner to mark. | btained from the invigilator and should         |
| 6 Before leaving the examination room you must give<br>not, you may lose all the marks for this paper.                                                                                                                      | e this book to the invigilator. If you do       |



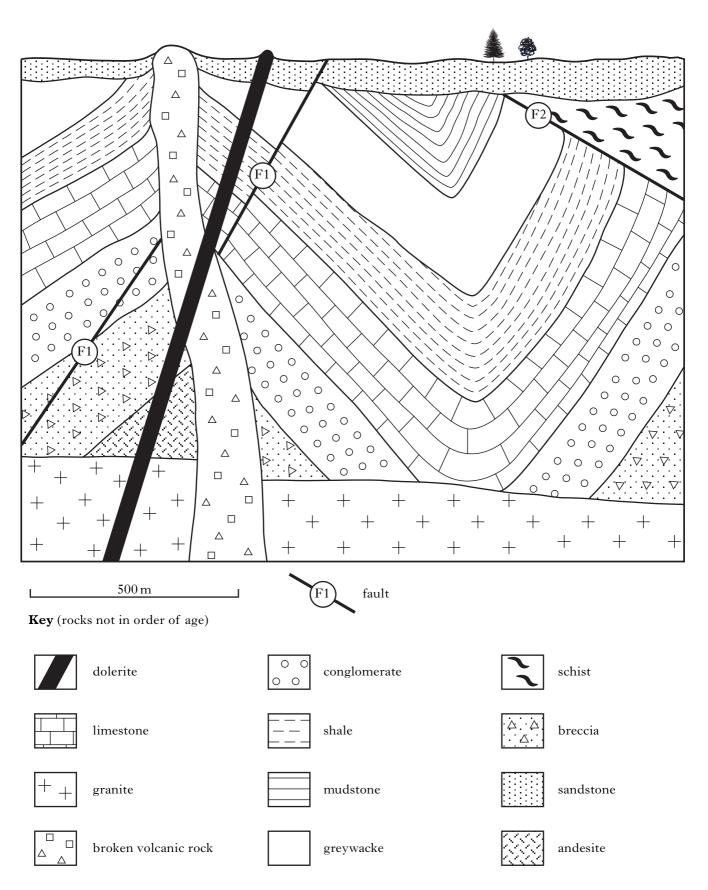




Marks


#### SECTION A

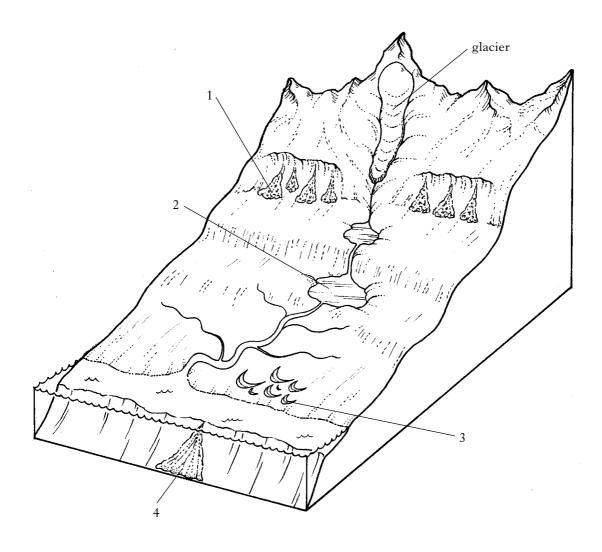
## All questions in this section should be attempted. Forty marks are allocated to this section.


**1.** Complete the table below. Use the page opposite to get a more detailed view of the thin sections.

| Thin section of rock | Names of minerals                   | Name of rock |
|----------------------|-------------------------------------|--------------|
| 3 mm                 | Mineral A<br>Mineral B<br>Mineral C |              |
| 5 mm                 | Mineral D                           |              |
| 3 mm                 | Mineral F                           |              |
| 3 mm                 | Mineral H                           |              |

6




2. Examine the geological cross section below.



|    |     |                                                                                                      |       | DO N<br>WRIT<br>TH<br>MAR | TE IN<br>IIS |
|----|-----|------------------------------------------------------------------------------------------------------|-------|---------------------------|--------------|
| 2. | (co | ntinued)                                                                                             | Marks |                           |              |
|    |     | ich <b>three</b> of the following statements best describe the relationships shown in the cross ion? |       |                           |              |
|    | А   | Fault F2 is a thrust fault.                                                                          |       |                           |              |
|    | В   | Fault F1 is older than fault F2.                                                                     |       |                           |              |
|    | С   | Fault F1 has been cut by another fault.                                                              |       |                           |              |
|    | D   | The broken volcanic rock is the youngest rock.                                                       |       |                           |              |
|    | Е   | There have been two faulting events.                                                                 |       |                           |              |
|    | F   | The dolerite is the youngest rock.                                                                   |       |                           |              |
|    | Giv | e only the letters:,                                                                                 | 3     |                           |              |

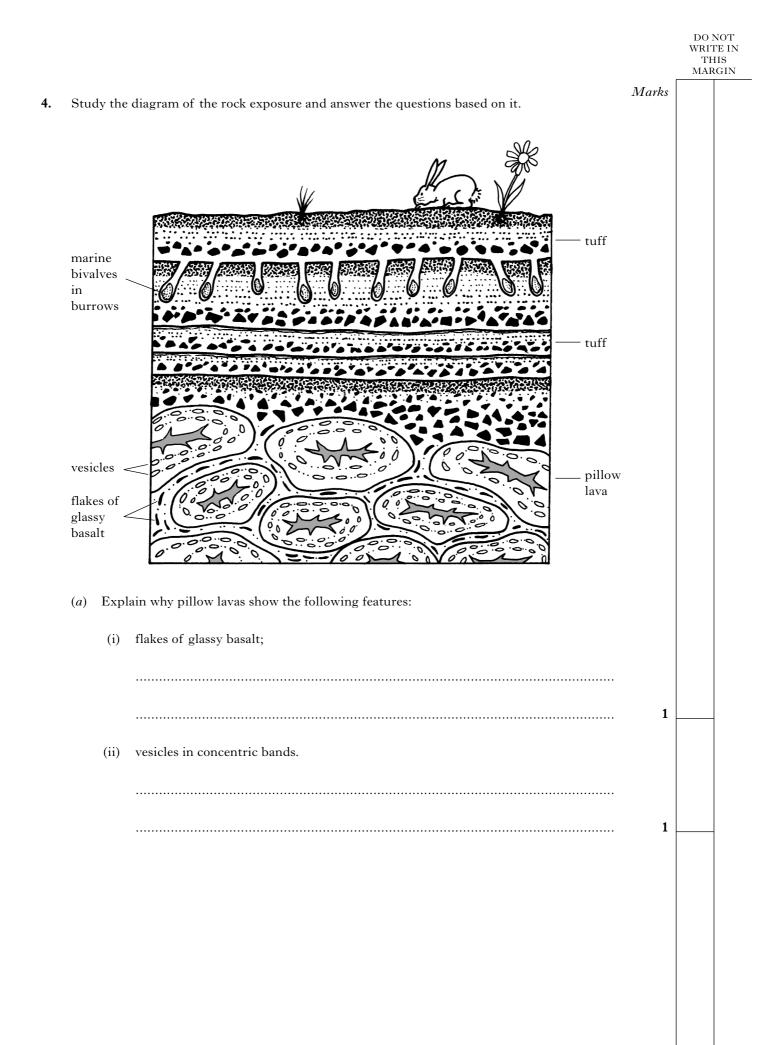
[Turn over

**3.** This diagram shows a variety of depositional environments numbered 1, 2, 3 and 4.



### 3. (continued)

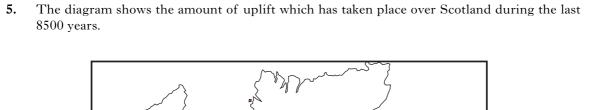
The table below gives information about each of the sediments deposited in environments 1 to 4. Complete the table by matching each sediment to its environment of deposition. Give a reason for each choice.

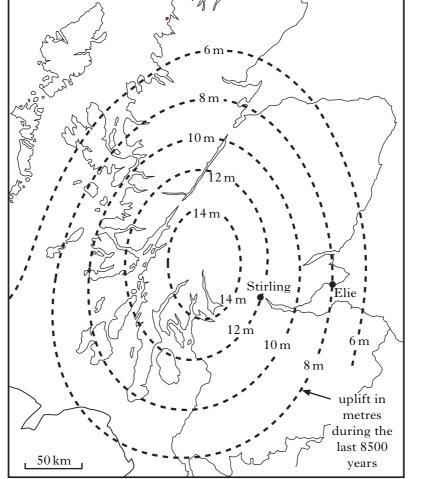

sediment W Environment Reason 80 size fractions found by 60 mass % sieving 40 20 2000 1000 500 250 125 63 - 32 16 16 8000 4000 $16\,000$ grain diameter µm sediment X Environment Reason sedimentary 2 mm structure sediment Y Environment Reason appearance of sedimentary 1 m sample sediment Z Environment \_ Reason sedimentary structure 80 cr 6

DO NOT

WRITE IN THIS

MARGIN


Marks




|    |              |        |                                                                               |         | DO N<br>WRIT<br>TH<br>MAR | TE IN<br>IIS |
|----|--------------|--------|-------------------------------------------------------------------------------|---------|---------------------------|--------------|
| 4. | (cor         | ntinue | ed)                                                                           | Marks   |                           |              |
|    | ( <i>b</i> ) | (i)    | How is tuff formed?                                                           |         |                           |              |
|    |              |        |                                                                               |         |                           |              |
|    |              |        |                                                                               | 1       |                           |              |
|    |              | (ii)   | Explain why the tuff in the diagram forms regular layers with graded bedding. |         |                           |              |
|    |              |        |                                                                               |         |                           |              |
|    |              |        |                                                                               | 2       |                           |              |
|    | ( <i>c</i> ) | Do tl  | he bivalves form a life or death assemblage? Give a reason for your answer.   |         |                           |              |
|    |              | Life   | or death assemblage                                                           |         |                           |              |
|    |              | Reas   | on                                                                            |         |                           |              |
|    |              |        |                                                                               | 1       |                           |              |
|    |              |        | [Tu                                                                           | rn over |                           |              |
|    |              |        |                                                                               |         |                           |              |

2

1





(a) Calculate the average rates of uplift per year at Stirling and Elie over the last 8500 years.

Average rate at Stirling .....

Space for working

(b) Explain why the rates of uplift for Stirling and Elie are different.

\_\_\_\_\_

[Turn over for Question 6 on Page twelve

2

2

1

# **6.** Rocks containing fossils have been collected from Canada and Scotland. Data collected on species, grouped by age, are shown in the table below.

| Age of rocks<br>(millions of years) | Number of same<br>species found in both<br>Canada and Scotland | Total number of<br>species found in<br>Canada | Total number of<br>species found in<br>Scotland | Similarity of<br>species in Canada<br>and Scotland<br>(%) |
|-------------------------------------|----------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|
| 185                                 | 80                                                             | 127                                           | 94                                              |                                                           |
| 165                                 | 74                                                             | 90                                            | 132                                             | 82                                                        |
| 125                                 | 68                                                             | 87                                            | 118                                             |                                                           |
| 88                                  | 62                                                             | 90                                            | 106                                             |                                                           |
| 36                                  | 32                                                             | 62                                            | 51                                              | 63                                                        |
| 18                                  | 15                                                             | 36                                            | 25                                              |                                                           |

# (a) Complete the table to show the similarity of species between Canada and Scotland. Use this equation.

| Similarity of species = | Number of same species found in both Canada and Scotland $\times 100\%$ |
|-------------------------|-------------------------------------------------------------------------|
| Similarity of species – | Smaller total number of species found in Canada or Scotland             |

Space for working

(b) (i) On the graph paper provided opposite, draw a graph of age of rocks against similarity of species (%).

(ii) Describe the general relationship shown by the graph.

.....

| (aantinuad           | Mar                                                                                                                                                   | MAR<br>ks |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| (continued           | )                                                                                                                                                     |           |
|                      |                                                                                                                                                       |           |
|                      |                                                                                                                                                       |           |
|                      |                                                                                                                                                       |           |
|                      |                                                                                                                                                       |           |
|                      |                                                                                                                                                       |           |
|                      |                                                                                                                                                       |           |
|                      |                                                                                                                                                       |           |
|                      |                                                                                                                                                       |           |
|                      |                                                                                                                                                       |           |
|                      |                                                                                                                                                       |           |
|                      |                                                                                                                                                       |           |
|                      |                                                                                                                                                       |           |
|                      |                                                                                                                                                       |           |
|                      |                                                                                                                                                       |           |
|                      |                                                                                                                                                       |           |
|                      |                                                                                                                                                       |           |
| (c) What J<br>Canada | percentage similarity would you expect to find between species living now in<br>a and Scotland?                                                       |           |
| Canada               | percentage similarity would you expect to find between species living now in<br>a and Scotland?                                                       | 1         |
| Canada<br><br>       | a and Scotland?                                                                                                                                       | 1         |
| Canada<br><br>       | a and Scotland?<br><br>does the fossil evidence indicate about the width of the Atlantic Ocean between                                                | 1         |
| Canada<br><br>       | a and Scotland?<br>does the fossil evidence indicate about the width of the Atlantic Ocean between<br>a and Scotland over the last 185 million years? | 1         |
| Canada<br>           | a and Scotland?<br>does the fossil evidence indicate about the width of the Atlantic Ocean between<br>a and Scotland over the last 185 million years? | 1         |
| Canada<br>           | a and Scotland?<br>does the fossil evidence indicate about the width of the Atlantic Ocean between<br>a and Scotland over the last 185 million years? | 1         |
| Canada<br>           | a and Scotland?<br>does the fossil evidence indicate about the width of the Atlantic Ocean between<br>a and Scotland over the last 185 million years? | 1         |
| Canada<br>           | a and Scotland?<br>does the fossil evidence indicate about the width of the Atlantic Ocean between<br>a and Scotland over the last 185 million years? | 1         |

|    |              |           |                                                                                                 |       | DO N<br>WRIT<br>TH<br>MAR | TE IN<br>IIS |
|----|--------------|-----------|-------------------------------------------------------------------------------------------------|-------|---------------------------|--------------|
| 7. | <i>(a)</i>   | Whi       | ch <b>two</b> statements correctly describe the Earth's magnetic field?                         | Marks |                           |              |
|    |              | А         | The field is approximately axial and dipolar.                                                   |       |                           |              |
|    |              | В         | The inner core is a solid magnet. This is what produces the Earth's magnetic field.             |       |                           |              |
|    |              | С         | The magnetic field is produced by convection currents flowing in the Earth's mantle.            |       |                           |              |
|    |              | D         | The field is exactly axial and dipolar.                                                         |       |                           |              |
|    |              | Е         | The magnetic field is produced by electrical currents flowing in the Earth's liquid outer core. |       |                           |              |
|    |              | Give      | only the letters: and                                                                           | 2     |                           |              |
|    | ( <i>b</i> ) |           | diagram shows apparent polar wandering curves for two continents. Figures are ons of years ago. |       |                           |              |
|    |              | ج%<br>(i) | How have continents W and X moved relative to each other over the last 500 million years?       |       |                           |              |
|    |              |           |                                                                                                 |       |                           |              |
|    |              | (ii)      | Why are the polar wandering curves described as "apparent"?                                     | 2     |                           |              |
|    |              |           |                                                                                                 | 1.    |                           |              |
|    |              |           |                                                                                                 |       |                           |              |

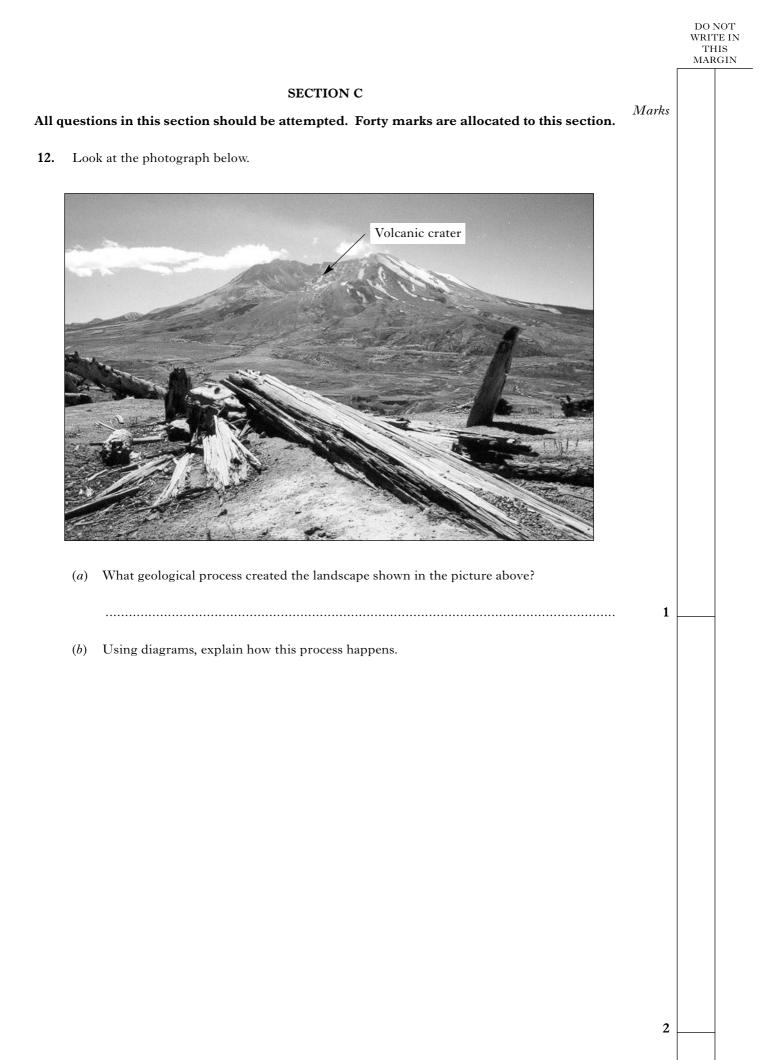
DO NOT WRITE IN THIS MARGIN

#### Marks

# **8.** Complete the table below.

| Diagram of ore deposit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Type of ore deposit   | Ore mineral or metal commonly |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Jr - J              | found in ore deposit          |   |
| gossan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |   |
| ore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                               |   |
| vater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                               |   |
| able ore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                               |   |
| f' minerals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                               |   |
| / mineral vein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                               |   |
| <u>0 m</u> (`, '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Magmatic segregation  |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | maginatic segregation |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Placer                |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |   |
| re minerals in stockwork                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                               |   |
| the finite rate of the second se |                       |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |   |
| A COMPANY AND A COMPANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |   |
| coarse-grained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                               |   |
| acidic igneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                               |   |
| $\times \operatorname{rock}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                               |   |
| $1 \text{ km} \bigvee X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                               | 4 |

Section A: Total (40) marks


|      |                                                                                                                                                                         |                | DO NOT<br>WRITE IN<br>THIS |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|
|      |                                                                                                                                                                         | [              | MARGIN                     |
|      | SECTION B                                                                                                                                                               | Marta          |                            |
|      | section consists of three questions. Only ONE question should be attempted. Fiftee<br>as are allocated to this section.                                                 | Marks<br>n     |                            |
| Cano | lidates should write their answer on pages 17, 18 and 19.                                                                                                               |                |                            |
| Addi | tional space for answers may be found at the end of this book.                                                                                                          |                |                            |
| 9.   | Write an essay on metamorphic rocks.<br>Credit will be given for the use of maps and diagrams.                                                                          |                |                            |
|      | Give details as follows.                                                                                                                                                |                |                            |
|      | (a) Regional metamorphism in the Scottish Highlands                                                                                                                     |                |                            |
|      | (Include mention of the following: how regional metamorphism is caused; metamorphis<br>grades; index minerals; part played by regional metamorphism in the rock cycle.) | ic<br><b>8</b> |                            |
|      | (b) How slate would be changed by metamorphism caused by a large igneous intrusion                                                                                      | 4              |                            |
|      | (c) Dynamic metamorphism                                                                                                                                                | 3              |                            |
| 10   | Write an easer on plate testenice                                                                                                                                       | (15)           |                            |
| 10.  | Write an essay on plate tectonics.<br>Credit will be given for the use of maps and diagrams.                                                                            |                |                            |
|      | Give details as follows.                                                                                                                                                |                |                            |
|      | (a) The evidence for continental drift                                                                                                                                  | 5              |                            |
|      | (b) The causes of plate movement                                                                                                                                        | 2              |                            |
|      | (c) Igneous activity at destructive plate margins                                                                                                                       | 4              |                            |
|      | (d) Igneous activity at constructive plate margins                                                                                                                      | 4              |                            |
| 11   |                                                                                                                                                                         | (15)           |                            |
| 11.  | Give an account of the geology of an area you have studied.<br>Maps and diagrams must be used.                                                                          |                |                            |
|      | Give details as follows:                                                                                                                                                |                |                            |
|      | location of the area                                                                                                                                                    |                |                            |
|      | • rock types and how they were formed                                                                                                                                   |                |                            |
|      | • geological features and structures, eg, folds, faults, fossils, igneous and sedimentar structures                                                                     | у              |                            |
|      | • methods of establishing the relative ages of the rocks, eg cross cutting relationships, wa up criteria, unconformity, etc                                             | у              |                            |
|      | • any other relevant information.                                                                                                                                       | (15)           |                            |
|      | Section B: Total (                                                                                                                                                      | 15) marks      |                            |
|      |                                                                                                                                                                         |                |                            |
|      |                                                                                                                                                                         |                |                            |
|      |                                                                                                                                                                         |                |                            |
|      | NOW GO TO SECTION C ON PAGE TWENTY                                                                                                                                      |                |                            |
|      |                                                                                                                                                                         |                |                            |
|      |                                                                                                                                                                         |                |                            |
|      |                                                                                                                                                                         |                |                            |
|      |                                                                                                                                                                         |                |                            |
|      |                                                                                                                                                                         |                |                            |
|      |                                                                                                                                                                         |                |                            |

DO NOT

# SPACE FOR ANSWERS

# SPACE FOR ANSWERS

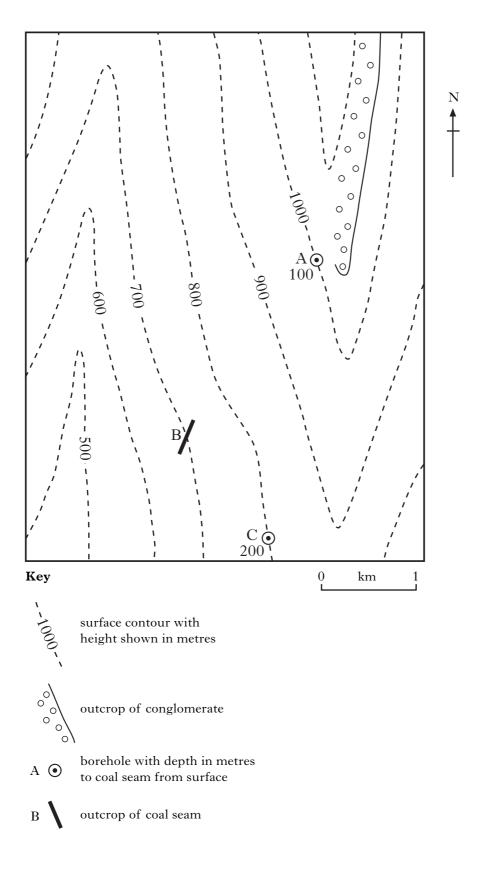
# SPACE FOR ANSWERS



DO NOT WRITE IN THIS MARGIN Marks 13. Look at the photograph below. Name the geological deposit shown in the photograph. *(a)* 1 *(b)* Using diagrams, suggest at least **one** way a feature like this could be formed. 2

DO NOT WRITE IN THIS MARGIN Marks 14. Look at the aerial photograph below. Ν Older rocks Younger rocks Main road (a) The rocks in the centre of this structure are older than those on the outside. What type of geological structure is this? 1 ..... The structure plunges in a ..... direction. 1 *(b)* 

| Stuc         |                                    |                                                                                                                                                                                                                                                                                                                                            | r        | MARG |
|--------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|
| Stut         | ly the                             | map (on the <b>separate worksheet</b> ) and answer the questions based on it.                                                                                                                                                                                                                                                              | Marks    |      |
| ( <i>a</i> ) | (i)                                | On which side of fault F1 have the rocks moved up? Give a reason for your answer.                                                                                                                                                                                                                                                          |          |      |
|              |                                    | Answer                                                                                                                                                                                                                                                                                                                                     |          |      |
|              |                                    | Reason                                                                                                                                                                                                                                                                                                                                     |          |      |
|              |                                    |                                                                                                                                                                                                                                                                                                                                            | 1        |      |
|              | (ii)                               | On which side of fault F2 have the rocks moved up? Give a reason for your answer.                                                                                                                                                                                                                                                          |          |      |
|              |                                    | Answer                                                                                                                                                                                                                                                                                                                                     |          |      |
|              |                                    | Reason                                                                                                                                                                                                                                                                                                                                     |          |      |
|              |                                    |                                                                                                                                                                                                                                                                                                                                            | 1        |      |
| ( <i>b</i> ) |                                    | granite has xenoliths of diorite and gneiss. Explain why the granite has no liths of quartzite or conglomerate.                                                                                                                                                                                                                            |          |      |
|              |                                    |                                                                                                                                                                                                                                                                                                                                            | 1        |      |
|              |                                    |                                                                                                                                                                                                                                                                                                                                            | <b>A</b> |      |
| (c)          |                                    | ch <b>two</b> statements are correct?                                                                                                                                                                                                                                                                                                      | 1        |      |
| ( <i>c</i> ) | А                                  | ch <b>two</b> statements are correct?<br>The dolerite lies on top of faults F1 and F2.                                                                                                                                                                                                                                                     | 1        |      |
| (c)          |                                    | ch <b>two</b> statements are correct?<br>The dolerite lies on top of faults F1 and F2.<br>Two unconformities are present.                                                                                                                                                                                                                  | 1        |      |
| (c)          | A<br>B                             | ch <b>two</b> statements are correct?<br>The dolerite lies on top of faults F1 and F2.                                                                                                                                                                                                                                                     | 1        |      |
| (c)          | A<br>B<br>C                        | ch <b>two</b> statements are correct?<br>The dolerite lies on top of faults F1 and F2.<br>Two unconformities are present.<br>The gneiss has not been folded.                                                                                                                                                                               | 1        |      |
| (c)          | A<br>B<br>C<br>D                   | ch <b>two</b> statements are correct?<br>The dolerite lies on top of faults F1 and F2.<br>Two unconformities are present.<br>The gneiss has not been folded.<br>The granite will cut through the felsite.                                                                                                                                  |          |      |
| (c)          | A<br>B<br>C<br>D<br>E<br>F         | ch <b>two</b> statements are correct?<br>The dolerite lies on top of faults F1 and F2.<br>Two unconformities are present.<br>The gneiss has not been folded.<br>The granite will cut through the felsite.<br>The map shows an anticline and a basin.                                                                                       | 2        |      |
| (c)<br>(d)   | A<br>B<br>C<br>D<br>E<br>F<br>Give | ch <b>two</b> statements are correct?<br>The dolerite lies on top of faults F1 and F2.<br>Two unconformities are present.<br>The gneiss has not been folded.<br>The granite will cut through the felsite.<br>The map shows an anticline and a basin.<br>In the area east of the map, the diorite will cut fault F2.                        |          |      |
|              | A<br>B<br>C<br>D<br>E<br>F<br>Give | ch <b>two</b> statements are correct?<br>The dolerite lies on top of faults F1 and F2.<br>Two unconformities are present.<br>The gneiss has not been folded.<br>The granite will cut through the felsite.<br>The map shows an anticline and a basin.<br>In the area east of the map, the diorite will cut fault F2.<br>e only the letters: |          |      |
|              | A<br>B<br>C<br>D<br>E<br>F<br>Give | ch <b>two</b> statements are correct?<br>The dolerite lies on top of faults F1 and F2.<br>Two unconformities are present.<br>The gneiss has not been folded.<br>The granite will cut through the felsite.<br>The map shows an anticline and a basin.<br>In the area east of the map, the diorite will cut fault F2.<br>e only the letters: |          |      |
|              | A<br>B<br>C<br>D<br>E<br>F<br>Give | ch <b>two</b> statements are correct?<br>The dolerite lies on top of faults F1 and F2.<br>Two unconformities are present.<br>The gneiss has not been folded.<br>The granite will cut through the felsite.<br>The map shows an anticline and a basin.<br>In the area east of the map, the diorite will cut fault F2.<br>e only the letters: |          |      |


DO NOT

|     |              |            |                                                                                                                                           |   | DO NOT<br>WRITE IN<br>THIS<br>MARGIN |
|-----|--------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------|
| 15. | (coi         | continued) |                                                                                                                                           |   |                                      |
|     | ( <i>e</i> ) | Give       | one reason to explain each of the following observations.                                                                                 |   |                                      |
|     |              | (i)        | Gneiss xenoliths in the granite show more recrystallisation than the diorite xenoliths.                                                   |   |                                      |
|     |              |            | Reason                                                                                                                                    |   |                                      |
|     |              |            |                                                                                                                                           | 1 |                                      |
|     |              | (ii)       | Xenoliths at the western end of the granite outcrop show much less<br>recrystallisation than xenoliths at the eastern end of the outcrop. |   |                                      |
|     |              |            | Reason                                                                                                                                    |   |                                      |
|     |              |            |                                                                                                                                           | 1 |                                      |
|     |              | (iii)      | The number of diorite xenoliths changes along the granite outcrop. The number of gneiss xenoliths does not change.                        |   |                                      |
|     |              |            | Reason                                                                                                                                    |   |                                      |
|     |              |            |                                                                                                                                           | 1 |                                      |
|     | ( <i>f</i> ) |            | he topographic profile (on the <b>separate worksheet</b> ), draw a geological section een points X and Y on the map.                      | 4 |                                      |

|                        |                                                        |         |                                   |            |                                        | _     | DO N<br>WRITI<br>THI<br>MARC |
|------------------------|--------------------------------------------------------|---------|-----------------------------------|------------|----------------------------------------|-------|------------------------------|
|                        | (co1                                                   | ntinued | )                                 |            |                                        | Marks |                              |
|                        | (g)                                                    |         |                                   | rea in the | correct order by inserting the correct |       |                              |
|                        | (87                                                    |         | from the box at the bottom of the |            |                                        |       |                              |
|                        |                                                        | YOUN    | IGEST                             |            |                                        |       |                              |
|                        |                                                        |         | D Intrusion of                    | dolerite   |                                        |       |                              |
|                        |                                                        |         |                                   |            |                                        |       |                              |
|                        |                                                        |         | C Folding of c                    | conglomera | ite                                    |       |                              |
|                        |                                                        |         |                                   |            |                                        |       |                              |
|                        |                                                        |         | A Deposition of                   | of arkose  |                                        |       |                              |
|                        |                                                        |         |                                   |            |                                        |       |                              |
|                        |                                                        |         | K Folding of s                    | edimentar  | y quartzite                            |       |                              |
|                        |                                                        |         | B Extrusion of                    | f basalt   |                                        |       |                              |
| L Intrusion of diorite |                                                        |         |                                   |            |                                        |       |                              |
|                        |                                                        |         |                                   |            |                                        |       |                              |
|                        |                                                        |         |                                   |            |                                        | 6     |                              |
|                        |                                                        | OLDE    | ST                                |            |                                        | Ĩ     |                              |
|                        | The events in this table are not in the correct order. |         |                                   |            |                                        |       |                              |
|                        |                                                        | Inc c   |                                   |            |                                        |       |                              |
|                        |                                                        | Α       | Deposition of arkose              | G          | Intrusion of granite                   |       |                              |
|                        |                                                        | B       | Extrusion of basalt               | Н          | Movement on fault F2                   |       |                              |
|                        |                                                        | C       | Folding of conglomerate           | Ι          | Formation of gneiss                    |       |                              |
|                        |                                                        | D       | Intrusion of dolerite             | J          | Intrusion of felsite                   |       |                              |
|                        |                                                        | E       | Deposition of siltstone           | К          | Folding of sedimentary quartzite       |       |                              |
|                        |                                                        | F       | Movement on fault F1              | L          | Intrusion of diorite                   |       |                              |

[Turn over

16. The map below shows part of an outcrop of conglomerate and an underlying coal seam. Study the map and answer the questions on the page opposite. DO NOT WRITE IN THIS MARGIN

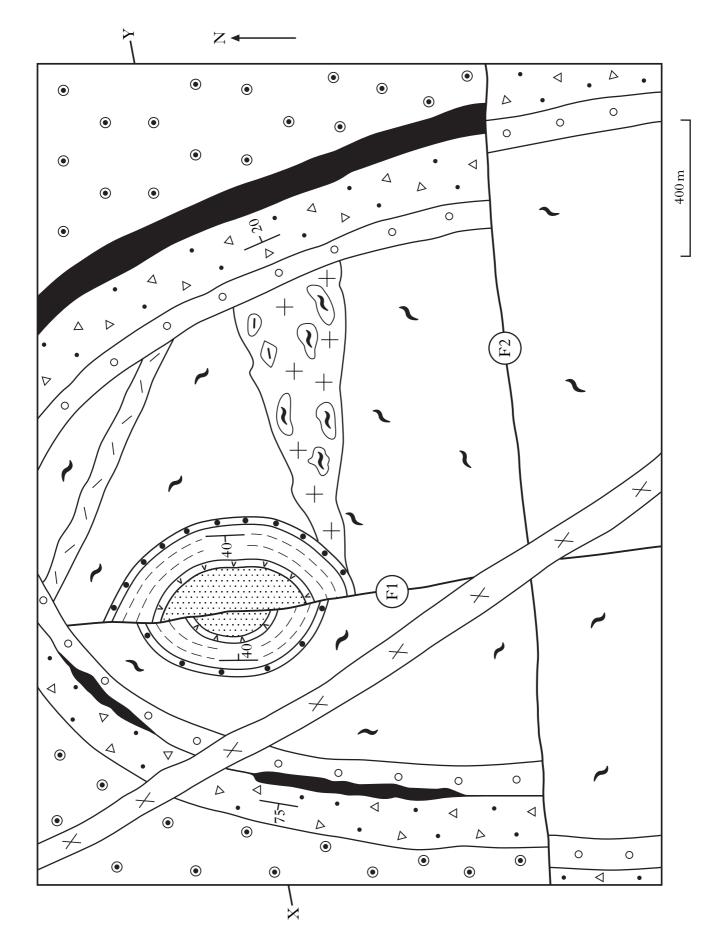


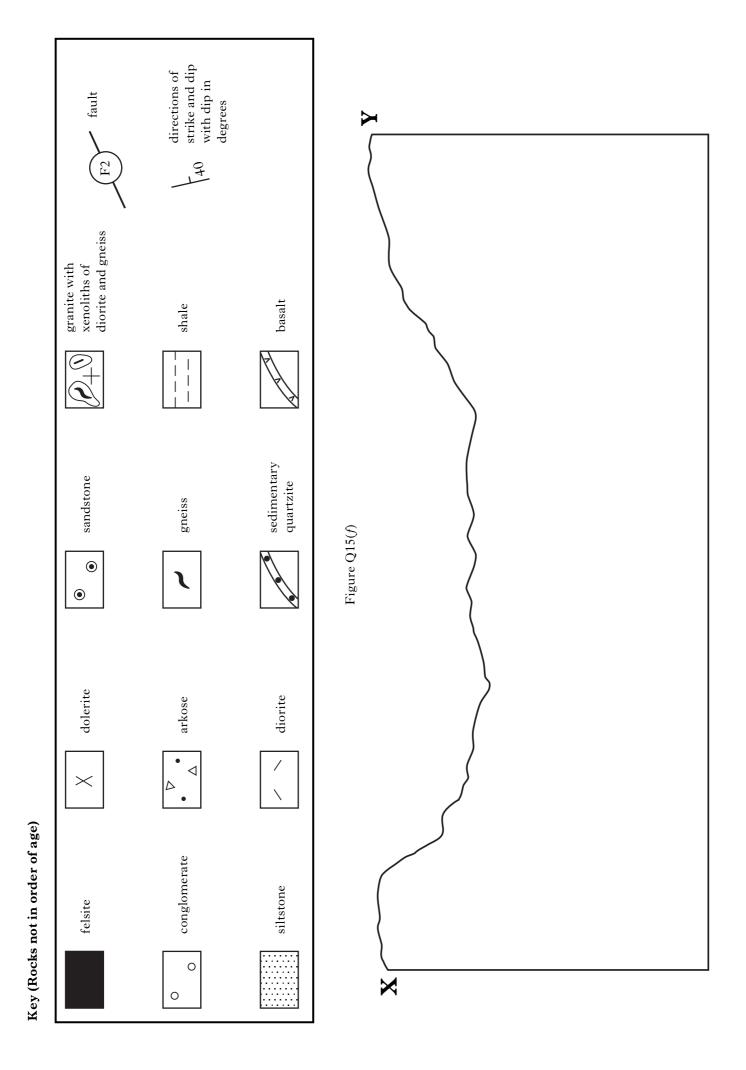
|                 |                                                                                                                                  |                                                                                                              | F     | DO N<br>WRIT<br>TH<br>MAR | E IN<br>IS |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------|---------------------------|------------|
| 16. (           | con                                                                                                                              | ntinued)                                                                                                     | Marks |                           |            |
|                 | <i>a</i> )                                                                                                                       | Part of the outcrop of a bed of conglomerate is shown. Complete the outcrop of the conglomerate.             | 1     |                           |            |
| (               | (b) A coal seam of uniform dip is found in boreholes A and C, at the depths from the surface shown. The coal seam outcrops at B. |                                                                                                              |       |                           |            |
|                 |                                                                                                                                  | (i) Draw structure contours for the coal seam over the whole area of the map.                                | 3     |                           |            |
|                 |                                                                                                                                  | (ii) Draw in the outcrop of the coal seam.                                                                   | 3     |                           |            |
|                 |                                                                                                                                  | (iii) Calculate the angle of dip of the coal seam.                                                           |       |                           |            |
|                 |                                                                                                                                  |                                                                                                              | 2     |                           |            |
|                 |                                                                                                                                  | Space for working                                                                                            |       |                           |            |
|                 |                                                                                                                                  |                                                                                                              |       |                           |            |
|                 |                                                                                                                                  |                                                                                                              |       |                           |            |
| (               |                                                                                                                                  | A lower coal seam with the same strike and dip occurs 200 metres beneath the coal seam in question $16(b)$ . |       |                           |            |
|                 |                                                                                                                                  | Renumber the structure contours and draw in the outcrop of the lower coal seam.                              | 2     |                           |            |
| (               | d)                                                                                                                               | Shade the area in which both coal seams could be mined.                                                      | 2     |                           |            |
|                 |                                                                                                                                  | Section C: Total (40) n                                                                                      | narks |                           |            |
|                 |                                                                                                                                  |                                                                                                              |       |                           |            |
|                 |                                                                                                                                  | [END OF QUESTION PAPER]                                                                                      |       |                           |            |
|                 |                                                                                                                                  |                                                                                                              |       |                           |            |
|                 |                                                                                                                                  |                                                                                                              |       |                           |            |
|                 |                                                                                                                                  |                                                                                                              |       |                           |            |
|                 |                                                                                                                                  |                                                                                                              |       |                           |            |
|                 |                                                                                                                                  |                                                                                                              |       |                           |            |
|                 |                                                                                                                                  |                                                                                                              |       |                           |            |
|                 |                                                                                                                                  |                                                                                                              |       |                           |            |
| [ <b>V</b> 042/ | 2011                                                                                                                             | Dage twenty enter                                                                                            |       |                           |            |

DO NOT WRITE IN THIS MARGIN

## SPACE FOR ANSWERS OR FOR ROUGH WORK

# X043/302


NATIONAL QUALIFICATIONS 2007 THURSDAY, 24 MAY 1.00 PM - 3.30 PM GEOLOGY HIGHER Worksheet for Question 15


Total

| Fill in these boxes and read what is printed below.       |                                   |  |  |  |  |
|-----------------------------------------------------------|-----------------------------------|--|--|--|--|
| Full name of centre                                       | Town                              |  |  |  |  |
| Forename(s)                                               | Surname                           |  |  |  |  |
| Date of birth<br>Day Month Year Scottish candidate number | Number of seat                    |  |  |  |  |
| To be inserted inside the front cover of the candidate's  | answer book and returned with it. |  |  |  |  |









[BLANK PAGE]