

National Qualifications SPECIMEN ONLY

# SQ06/N5/01

Chemistry Section 1—Questions

Date — Not applicable Duration — 2 hours

Instructions for completion of Section 1 are given on Page two of the question paper SQ06/N5/02.

Record your answers on the grid on Page three of your answer booklet.

Do NOT write in this booklet.

Before leaving the examination room you must give your answer booklet to the Invigilator. If you do not, you may lose all the marks for this paper.





## **SECTION 1**

- 1. Which of the following elements exists as a covalent network?
  - A Helium
  - B Nitrogen
  - C Silicon
  - D Sulfur
- 2. Which line in the table correctly describes an electron?

|   | Mass       | Charge |
|---|------------|--------|
| А | negligible | +1     |
| В | negligible | -1     |
| С | 1          | +1     |
| D | 1          | 0      |

- 3. Solid ionic compounds do not conduct electricity because
  - A the ions are not free to move
  - B the electrons are not free to move
  - C solid substances never conduct electricity
  - D there are no charged particles in ionic compounds.
- 4. The shapes of some molecules are shown below.



Phosphine is a compound of phosphorus and hydrogen. The shape of a molecule of phosphine is likely to be

- A tetrahedral
- B pyramidal
- C bent
- D linear.

Questions 5 and 6 refer to the table below.

The table shows information about some particles.

|          | Number of |          |           |  |  |  |
|----------|-----------|----------|-----------|--|--|--|
| Particle | protons   | neutrons | electrons |  |  |  |
| А        | 9         | 10       | 10        |  |  |  |
| В        | 11        | 12       | 11        |  |  |  |
| С        | 15        | 16       | 15        |  |  |  |
| D        | 19        | 20       | 18        |  |  |  |

- 5. Identify the particle which is a negative ion.
- 6. Identify the particle which would give a lilac flame colour.You may wish to use the data booklet to help you.
- 7. Which of the following statements correctly describes the concentrations of H<sup>+</sup>(aq) and OH<sup>-</sup>(aq) ions in pure water?
  - A The concentrations of  $H^+(aq)$  and  $OH^-(aq)$  ions are equal.
  - B The concentrations of  $H^+(aq)$  and  $OH^-(aq)$  ions are zero.
  - C The concentration of  $H^+(aq)$  ions is greater than the concentration of  $OH^-(aq)$  ions.
  - D The concentration of  $H^+(aq)$  ions is less than the concentration of  $OH^-(aq)$  ions.





The name of the above compound is

- A 2-ethylpropane
- B 1,1-dimethylpropane
- C 2-methylbutane
- D 3-methylbutane.

- 9. Which of the following could be the molecular formula of a cycloalkane?
  - A C<sub>6</sub>H<sub>8</sub>
  - B C<sub>6</sub>H<sub>10</sub>
  - C C<sub>6</sub>H<sub>12</sub>
  - D C<sub>6</sub>H<sub>14</sub>
- 10. In which of the following reactions is oxygen used up?
  - A Combustion
  - B Neutralisation
  - C Addition
  - D Polymerisation
- 11. Which line in the table correctly shows the two families of compounds which react together to produce esters?

| А | carboxylic acid | cycloalkane |
|---|-----------------|-------------|
| В | alcohol         | alkene      |
| С | cycloalkane     | alkene      |
| D | carboxylic acid | alcohol     |

12. Which of the following molecules is an isomer of hept-2-ene?



С

В

$$\begin{array}{ccccccccc} H & H & H & H & H \\ H - C & - H \\ H & H & H & H & H \\ - C & - C & - C & - C & - C \\ H & H & H & H \\ H & H & H & H \end{array}$$

D

$$H - \begin{array}{c} H & H & H & H & H & H & H & H \\ | & | & | & | & | & | & | & | & | \\ H - \begin{array}{c} C & - \begin{array}{c} C & - \begin{array}{c} C & - \begin{array}{c} C & - \end{array} \\ C & - \begin{array}{c} C & - \end{array} \\ | & | & | & | & | \\ H & H & H & H & H \end{array}$$

| Compound                                                                                               | pH of aqueous<br>solution | Effect on bromine solution |
|--------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|
| $\begin{array}{c c} H & H & 0 \\ H - C & -C & 0 \\ H & H & 0 \\ H & H & 0 \\ H & H & 0 \\ \end{array}$ | 4                         | no effect                  |
| $ \begin{array}{c} & & & & \\ H - C = C - C \\ & & \\ H & H \\ & & \\ H & H \end{array} $ OH           | 4                         | decolourised               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                 | 7                         | no effect                  |
| $ \begin{array}{ c c c c c } H & H & H \\ H & H & H & H \\ H & H & H &$                                | 7                         | decolourised               |

| 13. | A student tested some compou | nds. The results are given in the table. |
|-----|------------------------------|------------------------------------------|
|     |                              |                                          |

Which line in the table below shows the correct results for the following compound?

|   | pH of aqueous<br>solution | Effect on bromine solution |
|---|---------------------------|----------------------------|
| Α | 4                         | decolourised               |
| В | 7                         | decolourised               |
| С | 4                         | no effect                  |
| D | 7                         | no effect                  |

14. Which of the following diagrams could be used to represent the structure of a metal?



- 15. Which of the following metals does not react with dilute acid?
  - A Magnesium
  - B Calcium
  - C Copper
  - D Zinc
- 16. Which of the following metals can be extracted from its oxide by heat alone?
  - A Aluminium
  - B Iron
  - C Silver
  - D Zinc



In the cell shown, electrons flow through

- A the solution from tin to zinc
- B the solution from zinc to tin
- C the connecting wire from tin to zinc
- D the connecting wire from zinc to tin.
- 18. Four cells were made by joining copper, iron, tin and zinc to silver.



The voltages are shown in the table.

Which line in the table below shows the voltage of the cell containing copper joined to silver?

You may wish to use the data booklet to help you.

| Cell | Voltage (V) |
|------|-------------|
| Α    | 1.6         |
| В    | 1.2         |
| С    | 0.9         |
| D    | 0.5         |

**19.** The ion-electron equation for the oxidation and reduction steps in the reaction between magnesium and silver(I) ions are:

$$Mg \rightarrow Mg^{2+} + 2e^{-}$$
  
 $Ag^{+} + e^{-} \rightarrow Ag$ 

The overall redox equation is

A Mg + 
$$2Ag^+ \rightarrow Mg^{2+} + 2Ag$$

- $B \qquad Mg + Ag^{\scriptscriptstyle +} \longrightarrow Mg^{2+} + Ag$
- $\mathsf{C} \qquad \mathsf{Mg} + \mathsf{Ag}^{\scriptscriptstyle +} + \mathrm{e}^{\scriptscriptstyle -} \longrightarrow \mathsf{Mg}^{2+} + \mathsf{Ag} + 2\mathrm{e}^{\scriptscriptstyle -}$
- $\mathsf{D} \qquad \mathsf{Mg} + 2\mathsf{Ag} \to \mathsf{Mg}^{2+} + 2\mathsf{Ag}^+.$
- 20. The structure below shows a section of an addition polymer.



Which of the following molecules is used to make this polymer?



| -                                                                          |                               |              |            |         |            |           |                             |                   |                   | -                 |
|----------------------------------------------------------------------------|-------------------------------|--------------|------------|---------|------------|-----------|-----------------------------|-------------------|-------------------|-------------------|
| N5                                                                         | Nationa<br>Qualific<br>SPECIN | al<br>catior | is<br>DNLY |         |            |           |                             | Mark              | <                 |                   |
| SQ06/N5/02<br>Date—Not applicable<br>Duration—2 hours                      |                               |              |            |         | Sec<br>Gri | tio<br>da | C<br>n 1-<br>ind :<br>s q c | Cher<br>—A<br>Sec | mis<br>nsv<br>tio | try<br>ver<br>n 2 |
| Fill in these boxes and read what is printed below.Full name of centreTown |                               |              |            |         |            |           |                             |                   |                   |                   |
| Forename(s)                                                                |                               | Surnam       | e          |         |            |           | Nui                         | mber              | of se             | at                |
|                                                                            |                               |              |            |         |            |           |                             |                   |                   |                   |
| Date of birth<br>Day Month                                                 | Year                          |              | Scott      | ish can | didate n   | umb       | er                          |                   |                   |                   |
| D D M M                                                                    | YY                            |              |            |         |            |           |                             |                   |                   |                   |
| Total marks — 80                                                           |                               |              |            |         |            |           |                             |                   |                   |                   |
| SECTION 1 — 20 marks                                                       |                               |              |            |         |            |           |                             |                   |                   |                   |
| Attempt ALL questions in t                                                 | his section.                  |              |            |         |            |           |                             |                   |                   |                   |

Instructions for completion of Section 1 are given on Page two.

SECTION 2 — 60 marks

Attempt ALL questions in this section.

Read all questions carefully before attempting.

Use blue or black ink. Do NOT use gel pens.

Write your answers in the spaces provided. Additional space for answers and rough work is provided at the end of this booklet. If you use this space, write clearly the number of the question you are attempting. Any rough work must be written in this booklet. You should score through your rough work when you have written your fair copy.

Before leaving the examination room you must give this booklet to the Invigilator. If you do not, you may lose all the marks for this paper.





The questions for Section 1 are contained in the booklet Chemistry Section 1–Questions. Read these and record your answers on the grid on Page three opposite.

- 1. The answer to each question is **either** A, B, C or D. Decide what your answer is, then fill in the appropriate bubble (see sample question below).
- 2. There is only one correct answer to each question.
- 3. Any rough working should be done on the additional space for rough working and answers sheet.

## Sample Question

To show that the ink in a ball-pen consists of a mixture of dyes, the method of separation would be:

- A fractional distillation
- B chromatography
- C fractional crystallisation
- D filtration.

The correct answer is B-chromatography. The answer B bubble has been clearly filled in (see below).



## Changing an answer

If you decide to change your answer, cancel your first answer by putting a cross through it (see below) and fill in the answer you want. The answer below has been changed to D.



If you then decide to change back to an answer you have already scored out, put a tick  $(\checkmark)$  to the **right** of the answer you want, as shown below:





Page two





Page three

[BLANK PAGE]



Page four

MARKS DO NOT WRITE IN THIS MARGIN Attempt ALL questions. Graphs can be used to show the change in the rate of a reaction as the 1. reaction proceeds. The graph shows the volume of gas produced in an experiment over a period of time. Volume of gas (cm<sup>3</sup>) 90 100 110 120 Time (s)

(a) State the time, in seconds, at which the reaction stopped.



| Г                                                                                                                                    |      |                            |
|--------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------|
| 1. (continued)                                                                                                                       | AKKS | WRITE IN<br>THIS<br>MARGIN |
| (b) Calculate the average rate of reaction, in cm <sup>3</sup> s <sup>-1</sup> , for the first 20 seconds. Show your working clearby | 2    |                            |
| Show your working clearly.                                                                                                           |      |                            |
|                                                                                                                                      |      |                            |
|                                                                                                                                      |      |                            |
| (c) The graph shows that the rate of reaction decreases as the reaction proceeds.                                                    |      |                            |
| Suggest a reason for this.                                                                                                           | 1    |                            |
| Total marks                                                                                                                          | 4    |                            |



L

Page six

 The group 7 element bromine was discovered by Balard in 1826. Bromine gets its name from the Greek 'bromos' meaning stench. MARKS DO NOT WRITE IN

1

1

2

THIS

Bromine consists of a mixture of two isotopes,  $^{79}_{35}Br$  and  $^{81}_{35}Br$ .

- (a) What is meant by the term isotope?
- (b) Complete the table for  ${}^{79}_{35}Br$ .

| Isotope                        | Number of protons | Number of neutrons |
|--------------------------------|-------------------|--------------------|
| <sup>79</sup> <sub>35</sub> Br |                   |                    |

(c) The relative atomic mass of an element can be calculated using the formula:

(mass of isotope A  $\times$  % of isotope A) + (mass of isotope B  $\times$  % of isotope B)

100

A sample of bromine contains 55% of the isotope with mass 79 and 45% of the isotope with mass 81.

Calculate the relative atomic mass of bromine in this sample.

Show your working clearly.



Page seven

| Γ |    |      |                                                                                                                             |        |                                      |  |
|---|----|------|-----------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------|--|
|   | 2. | (con | tinued)                                                                                                                     | MARKS  | DO NOT<br>WRITE IN<br>THIS<br>MARGIN |  |
|   |    | (d)  | In 1825 bromine had been isolated from sea water by Liebig who mistakenly thought it was a compound of iodine and chlorine. | C      |                                      |  |
|   |    |      | Using your knowledge of chemistry, comment on why Liebig might have made this mistake.                                      | Э<br>З |                                      |  |
|   |    |      | Total marks                                                                                                                 | s 7    |                                      |  |
|   |    |      |                                                                                                                             |        |                                      |  |
|   |    |      |                                                                                                                             |        |                                      |  |
|   |    |      |                                                                                                                             |        |                                      |  |



L

Page eight

## MARKS DO NOT WRITE IN

1

3. (a) Sulfur dioxide gas is produced when fossil fuels containing sulfur are burned.

> When sulfur dioxide dissolves in water in the atmosphere "acid rain" is produced.

Circle) the correct phrase to complete the sentence.

|                                              | a higher |               |
|----------------------------------------------|----------|---------------|
| Compared with pure water, acid rain contains | a lower  | concentration |
| of hydrogen ions.                            | the same |               |

(b) The table shows information about the solubility of sulfur dioxide.

| Temperature (°C)                   | 0    | 20   | 30  | 40  | 50  | 60  |
|------------------------------------|------|------|-----|-----|-----|-----|
| Solubility (g/100cm <sup>3</sup> ) | 22.0 | 10.0 | 6.0 | 3.0 | 2.0 | 1.5 |

(i) Draw a line graph of solubility against temperature.

Use appropriate scales to fill most of the graph paper.

3

(Additional graph paper, if required, will be found on Page twenty-seven.)





THIS

| 8. (b) (continu | ed)                   |                                      |          |     |            |    |        |           | Μ   | ARKS | DO NO<br>WRITE<br>THIS<br>MARG |
|-----------------|-----------------------|--------------------------------------|----------|-----|------------|----|--------|-----------|-----|------|--------------------------------|
| (ii)            | Using you<br>g/100 cm | ur graph,<br><sup>3</sup> , at 10°C. | estimate | the | solubility | of | sulfur | dioxide,  | in  | 1    |                                |
|                 |                       |                                      |          |     |            |    |        | Total mai | ſks | 5    |                                |
|                 |                       |                                      |          |     |            |    |        |           |     |      |                                |
|                 |                       |                                      |          |     |            |    |        |           |     |      |                                |
|                 |                       |                                      |          |     |            |    |        |           |     |      |                                |
|                 |                       |                                      |          |     |            |    |        |           |     |      |                                |
|                 |                       |                                      |          |     |            |    |        |           |     |      |                                |
|                 |                       |                                      |          |     |            |    |        |           |     |      |                                |
|                 |                       |                                      |          |     |            |    |        |           |     |      |                                |
|                 |                       |                                      |          |     |            |    |        |           |     |      |                                |



Page ten





Page eleven

## 4. (b) (continued)

(ii) The student considered two methods to confirm the mass of carbon dioxide gas produced in this reaction.



|    | Method A                                                                        |    | Method B                                                                                                                                         |
|----|---------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Add the acid from the measuring cylinder to the calcium carbonate in the flask. | 1. | Weigh the flask with the calcium carbonate and the acid in the measuring cylinder together.                                                      |
| 2. | Weigh the flask and contents.                                                   | 2. | Add the acid from the measuring<br>cylinder to the calcium carbonate in<br>the flask and replace the empty<br>measuring cylinder on the balance. |
| 3. | Leave until no more bubbles are produced.                                       | 3. | Leave until no more bubbles are produced.                                                                                                        |
| 4. | Reweigh the flask and contents.                                                 | 4. | Reweigh the flask, contents and the empty measuring cylinder together.                                                                           |

Explain which method would give a more reliable estimate of the mass of carbon dioxide produced during the reaction.

> Total marks 7

2





Page twelve

MARKS DO NOT WRITE IN THIS MARGIN

#### MARKS N DO NOT WRITE IN THIS MARGIN

1

1

1

5. Antacid tablets are used to treat indigestion which is caused by excess acid in the stomach.

| Name of active ingredient                                                 | magnesium<br>carbonate | calcium<br>carbonate | magnesium<br>hydroxide | aluminium<br>hydroxide |
|---------------------------------------------------------------------------|------------------------|----------------------|------------------------|------------------------|
| Reaction with acid                                                        | fizzes                 | fizzes               | does not fizz          | does not fizz          |
| <i>Cost per gram</i><br>(pence)                                           | 16.0                   | 11.0                 | 7.5                    | 22.0                   |
| Mass of solid<br>needed to<br>neutralise 20cm <sup>3</sup><br>of acid (g) | 0.7                    | 1.2                  | 0.6                    | 0· 4                   |
| Cost of<br>neutralising 20 cm <sup>3</sup><br>of acid (pence)             |                        | 13-2                 | 4.5                    | 8.8                    |

Different brands of tablets contain different active ingredients.

(a) Write the **ionic** formula for aluminium hydroxide.

- (b) (i) Complete the table to show the cost of using magnesium carbonate to neutralise  $20 \text{ cm}^3$  of acid.
  - (ii) Which one of the four active ingredients would you use to neutralise excess stomach acid?
     Explain your choice.

Total marks 3



6. Read the passage below and answer the questions that follow.

## Potassium Permanganate (KMnO<sub>4</sub>)—The Purple Solution

Potassium permanganate's strong oxidising properties make it an effective disinfectant. Complaints such as athlete's foot and some fungal infections are treated by bathing the affected area in  $KMnO_4$  solution.

In warm climates vegetables are washed in  $KMnO_4$  to kill bacteria such as E. coli and S. aureus. Chemists use  $KMnO_4$  in the manufacture of saccharin, ascorbic acid (vitamin C) and benzoic acid.

Baeyer's reagent is an alkaline solution of  $KMnO_4$  and is used to detect unsaturated organic compounds. The reaction of  $KMnO_4$  with alkenes is also used to extend the shelf life of fruit. Ripening fruit releases ethene gas which causes other fruit to ripen. Shipping containers are fitted with gas scrubbers that use alumina or zeolite impregnated with  $KMnO_4$  to stop the fruit ripening too quickly.

$$C_2H_4 + 4KMnO_4 \rightarrow 4MnO_2 + 4KOH + 2CO_2$$

The scrubbers indicate when they need to be replaced because the purple colour changes to brown as the  $KMnO_4$  is used up.

The passage on potassium permanganate was taken from an article by Simon Cotton on "Soundbite molecules" in "Education in Chemistry" November 2009.

- (a) Suggest a pH for Baeyer's reagent.
- (b) Name the gas removed by the scrubbers.
- (c) Name a chemical mentioned in the passage which contains the following functional group.

Total marks 3





### 1

1

1

#### MARKS C DO NOT WRITE IN THIS MARGIN

1

- 7. In the 2012 London Olympics, alkanes were used as fuels for the Olympic flame.
  - (a) The torches that carried the Olympic flame across Britain burned a mixture of propane and butane.



Propane and butane are members of the same homologous series. What is meant by the term homologous series?

(b) Natural gas, which is mainly methane, was used to fuel the flame in the Olympic cauldron.



(i) Draw a diagram to show how all the outer electrons are arranged in a molecule of methane,  $CH_4$ .





| 7. (b) (continu | ied)                                                         | MARKS | DO NOT<br>WRITE IN<br>THIS<br>MARGIN |  |
|-----------------|--------------------------------------------------------------|-------|--------------------------------------|--|
| (ii)            | Methane is a covalent molecular substance.                   |       |                                      |  |
|                 | It has a low boiling point and is a gas at room temperature. |       |                                      |  |
|                 | Explain why methane is a gas at room temperature.            | 1     |                                      |  |
|                 | Total marks                                                  | s 3   |                                      |  |
|                 |                                                              |       |                                      |  |



L

Page sixteen

MARKS DO NOT WRITE IN Car manufacturers have developed flexible fuel engines for vehicles. 8. These vehicles can run on ethanol or petrol or a mixture of both.

THIS

1

1

1

Ethanol can be produced from ethene which comes from cracking crude oil. It can also be made by fermenting glucose which is obtained from crops such as sugar cane and maize.

(a) The structure of ethanol is shown below.

(Circle) the functional group in this molecule.

(b) Ethanol is produced from ethene as shown.



(i) Name the type of chemical reaction taking place.

(ii) Draw a structural formula for a product of the following reaction.

$$\begin{array}{ccccccc} H & H & H & H & H \\ H & - C & - C & - C & = C & + & H_2O \\ & & & & | & & | \\ H & & & H & \\ H & - C & - H & \\ & & H & & \downarrow \end{array}$$



Page seventeen

| 8. (continued)                                                | MARKS DO NOT<br>WRITE IN<br>THIS<br>MARGIN |  |
|---------------------------------------------------------------|--------------------------------------------|--|
| (c) Suggest one disadvantage of producing ethanol from crops. | 1                                          |  |
|                                                               |                                            |  |
| (d) Ethanol can be used to produce ethanoic acid.             |                                            |  |
| (i) Draw a structural formula for ethanoic acid.              | 1                                          |  |
|                                                               |                                            |  |
|                                                               |                                            |  |
|                                                               |                                            |  |
| (ii) To which family of compounds does ethanoic acid belong?  | 1                                          |  |
| Total ma                                                      | rks 6                                      |  |
|                                                               |                                            |  |
|                                                               |                                            |  |
|                                                               |                                            |  |
|                                                               |                                            |  |

L



Page eighteen

- 9. Alkanes burn, releasing energy.
  - (a) What name is given to any chemical reaction which releases energy?
  - (b) A student investigated the amount of energy released when an alkane burns using the apparatus shown.



The student recorded the following data.

| Mass of alkane burned           | 1 g                                         |
|---------------------------------|---------------------------------------------|
| Volume of water                 | 200 cm <sup>3</sup>                         |
| Initial temperature of water    | 15 °C                                       |
| Final temperature of water      | 55 °C                                       |
| Specific heat capacity of water | 4 · 18 kJ kg <sup>−1</sup> °C <sup>−1</sup> |

(i) Calculate the energy released, in kJ.You may wish to use the data booklet to help you.Show your working clearly.



3

1

|                | ued)                                     |                                                           |                                      | ŀ           | THI |
|----------------|------------------------------------------|-----------------------------------------------------------|--------------------------------------|-------------|-----|
| (ii)           | ) Suggest <b>one</b> impro               | ovement to the student's investigation                    | ion.                                 | 1           |     |
|                |                                          |                                                           |                                      |             |     |
| (c) The<br>one | table gives inform<br>mole of some alkar | ation about the amount of energy<br>nes are burned.       | released when                        |             |     |
|                | Name of alkane                           | Energy released when one mole<br>of alkane is burned (kJ) |                                      |             |     |
|                | methane                                  | 891                                                       |                                      |             |     |
|                | ethane                                   | 1560                                                      |                                      |             |     |
|                | propane                                  | 2220                                                      |                                      |             |     |
|                | butane                                   | 2877                                                      |                                      |             |     |
|                |                                          | it carbon atoms in the alkane molec                       | ule.                                 | 1           |     |
| (ii)           | ) Predict the amou                       | unt of heat released, in kJ, wher                         | ule.<br>n one mole of                | 1           |     |
| (ii)           | ) Predict the amou<br>pentane is burned  | unt of heat released, in kJ, wher                         | ule.<br>n one mole of                | 1           |     |
| (ii)           | ) Predict the amou<br>pentane is burned  | unt of heat released, in kJ, wher                         | ule.<br>n one mole of<br>Total marks | 1<br>1<br>7 |     |
| (ii)           | ) Predict the amou<br>pentane is burned  | unt of heat released, in kJ, wher                         | ule.<br>n one mole of<br>Total marks | 1<br>1<br>7 |     |
| (ii)           | ) Predict the amou<br>pentane is burned  | unt of heat released, in kJ, wher                         | ule.<br>n one mole of<br>Total marks | 1<br>1<br>7 |     |
| (ii)           | ) Predict the amou<br>pentane is burned  | unt of heat released, in kJ, wher                         | ule.<br>n one mole of<br>Total marks | 1<br>7      |     |
| (ii)           | ) Predict the amou<br>pentane is burned  | unt of heat released, in kJ, wher                         | ule.<br>n one mole of<br>Total marks | 1<br>7      |     |
| (ii)           | ) Predict the amou<br>pentane is burned  | unt of heat released, in kJ, wher                         | ule.<br>n one mole of<br>Total marks | 1<br>7      |     |



#### MARKS DO NOT WRITE IN

3

THIS

10. The essential elements for plant growth are nitrogen, phosphorus and potassium.

A student was asked to prepare a dry sample of a compound which contained **two** of these elements.

The student was given access to laboratory equipment and the following chemicals.

| Chemical            | Formula                           |
|---------------------|-----------------------------------|
| ammonium hydroxide  | NH <sub>4</sub> OH                |
| magnesium nitrate   | Mg(NO <sub>3</sub> ) <sub>2</sub> |
| nitric acid         | HNO <sub>3</sub>                  |
| phosphoric acid     | H <sub>3</sub> PO <sub>4</sub>    |
| potassium carbonate | K <sub>2</sub> CO <sub>3</sub>    |
| potassium hydroxide | КОН                               |
| sodium hydroxide    | NaOH                              |
| sulfuric acid       | H <sub>2</sub> SO <sub>4</sub>    |
| water               | H <sub>2</sub> O                  |

Using your knowledge of chemistry, comment on how the student could prepare their dry sample.

You may wish to use the data booklet to help you.



Page twenty-one





Page twenty-two





Page twenty-three

MARKS DO NOT WRITE IN THIS MARGIN

2

2

**13.** The concentration of chloride ions in water affects the ability of some plants to grow.

A student investigated the concentration of chloride ions in the water at various points along the river Tay.

The concentration of chloride ions in water can be determined by reacting the chloride ions with silver ions.

 $Ag^+(aq) + CI^-(aq) \rightarrow AgCI(s)$ 

A  $20 \text{ cm}^3$  water sample gave a precipitate of silver chloride with a mass of 1.435 g.

(a) Calculate the number of moles of silver chloride, AgCI, present in this sample.

Show your working clearly.

(b) Using your answer to part (a), calculate the concentration, in mol I<sup>-1</sup>, of chloride ions in this sample.

Show your working clearly.

Total marks 4

[END OF SPECIMEN QUESTION PAPER]



Page twenty-four

## ADDITIONAL SPACE FOR ROUGH WORKING AND ANSWERS

MARKS DO NOT WRITE IN THIS MARGIN



Page twenty-five

ſ

MARKS DO NOT WRITE IN THIS MARGIN



Page twenty-six



## ADDITIONAL SPACE FOR ANSWERS

MARKS DO NOT WRITE IN THIS MARGIN

Additional graph paper for Question 3 (b) (i)





Page twenty-seven



National Qualifications SPECIMEN ONLY

SQ06/N5/01

# Chemistry

# Marking Instructions

These Marking Instructions have been provided to show how SQA would mark this Specimen Question Paper.

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purpose, written permission must be obtained from SQA's Marketing team on marketing@sqa.org.uk.

Where the publication includes materials from sources other than SQA (ie secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the user's responsibility to obtain the necessary copyright clearance.



## Part One: General Marking Principles for National 5 Chemistry

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question. The marking schemes are written to assist in determining the 'minimal acceptable answer' rather than listing every possible correct and incorrect answer.

- (a) Marks for each candidate response must <u>always</u> be assigned in line with these General Marking Principles and the specific Marking Instructions for the relevant question.
- (b) Marking should always be positive, ie marks should be awarded for what is correct and not deducted for errors or omissions.
- (c) There are no half marks awarded.
- (d) Where a candidate makes an error at an early stage in a multi-stage calculation, credit should normally be given for correct follow-on working in subsequent stages, unless the error significantly reduces the complexity of the remaining stages. The same principle should be applied in questions which require several stages of non-mathematical reasoning.
- (e) Unless a numerical question specifically requires evidence of working to be shown, full marks should be awarded for a correct final answer (including unit) on its own.
- (f) Where a wrong answer (for which no credit has been given) is carried forward to another step, credit will be given provided the end result is used correctly.

## Part Two: Marking Instructions for each question

## Section 1

| Question | Response | Mark |
|----------|----------|------|
| 1        | С        | 1    |
| 2        | В        | 1    |
| 3        | А        | 1    |
| 4        | В        | 1    |
| 5        | А        | 1    |
| 6        | D        | 1    |
| 7        | А        | 1    |
| 8        | С        | 1    |
| 9        | С        | 1    |
| 10       | А        | 1    |
| 11       | D        | 1    |
| 12       | С        | 1    |
| 13       | В        | 1    |
| 14       | А        | 1    |
| 15       | С        | 1    |
| 16       | С        | 1    |
| 17       | D        | 1    |
| 18       | D        | 1    |
| 19       | А        | 1    |
| 20       | В        | 1    |

## Section 2

| Qı | Jesti | on | Expected response                                                                                                                                                  | Max<br>mark | Additional guidance                                                                                         |
|----|-------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------|
| 1  | a     |    | 86-88 seconds                                                                                                                                                      | 1           |                                                                                                             |
| 1  | Ь     |    | $\frac{30-0}{20} = 1.5 \text{ no units required}$ $1.5 \text{ on its own} = 2 \text{ marks}$                                                                       | 2           | Correct method but incorrect<br>arithmetic = 1 mark<br>Incorrect values used but method<br>correct = 1 mark |
| 1  | С     |    | Less reactants<br>or<br>concentration of reactants decreases<br>or<br>reactants are used up<br>or<br>less chance of particles colliding<br>or<br>equivalent answer | 1           |                                                                                                             |
| 2  | a     |    | Atoms with same atomic<br>number/number of protons/positive<br>particles<br>and<br>different mass number/number of<br>neutrons                                     | 1           |                                                                                                             |
| 2  | b     |    | Protons = 35<br>Neutrons = 44                                                                                                                                      | 1           | Both required                                                                                               |
| 2  | С     |    | (79 × 55) + (81 × 45) / 100 = 79.9<br>79.9 on its own<br>80 with working                                                                                           | 2           | correct substitution of mass and<br>percentage = 1 mark<br>80 on its own = 0 marks                          |

| Question |   |    | Expected response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max<br>mark | Additional guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|---|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | d |    | <b>3 marks:</b> The maximum available<br>mark would be awarded to a<br>student who has demonstrated a<br>good understanding of the chemistry<br>involved. The student shows a good<br>comprehension of the chemistry of<br>the situation and has provided a<br>logically correct answer to the<br>question posed. This type of<br>response might include a statement<br>of the principles involved, a<br>relationship or an equation, and the<br>application of these to respond to<br>the problem. This does not mean<br>the answer has to be what might be<br>termed an "excellent" answer or a<br>"complete" one. | 3           | 2 marks: The student has<br>demonstrated a reasonable<br>understanding of the chemistry<br>involved. The student makes some<br>statement(s) which is/are relevant<br>to the situation, showing that the<br>problem is understood. 1 mark: The student has<br>demonstrated a limited<br>understanding of the chemistry<br>involved. The candidate has made<br>some statement(s) which is/are<br>relevant to the situation, showing<br>that at least a little of the<br>chemistry within the problem is<br>understood. 0 mark: the student has<br>demonstrated no understanding of<br>the chemistry involved. There is no<br>evidence that the student has<br>recognised the area of chemistry<br>involved or has given any statement<br>of relevant chemistry principle.<br>This mark would also be given if the<br>candidate merely restates the<br>chemistry given in the question. |
| 3        | a |    | Higher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3        | b | i  | Both axes labels with units1 markBoth scales1 markGraph drawn accurately1 markAllow ½ box tolerance and oneplotting error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3           | Bar graph max 2 marks<br>Max 2 marks if less than half graph<br>paper is used in either axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3        | b | ii | Value must match candidate's graph<br>If no graph drawn 16 $\pm$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4        | a | i  | $Li_2CO_3 + 2HCl \rightarrow 2 LiCl + CO_2 + H_2O$<br>Or correct multiples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Question |   |    | Expected response                                                                                                                                                                     |                                           | Max<br>mark | Additional guidance           |
|----------|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------|-------------------------------|
| 4        | a | ii | Li Cl formula/words/circle<br>/highlighted in equation                                                                                                                                | ed                                        | 1           |                               |
| 4        | b | i  | 1/100 = 0.01                                                                                                                                                                          | 1 mark                                    | 3           | Any other correct method.     |
|          |   |    | 1:1 ratio                                                                                                                                                                             | 1 mark                                    |             |                               |
|          |   |    | $0.01 \times 44 = 0.44$                                                                                                                                                               | 1 mark                                    |             |                               |
|          |   |    | Units not required                                                                                                                                                                    |                                           |             |                               |
|          |   |    | 1 mole gives 1 mole                                                                                                                                                                   | 1 mark                                    |             |                               |
|          |   |    | 100 g gives 44 g                                                                                                                                                                      | 1 mark                                    |             |                               |
|          |   |    | 1 g gives $44/100 = 0.44$                                                                                                                                                             | 1 mark                                    |             |                               |
|          |   |    | 0∙44 on its own                                                                                                                                                                       | 3 marks                                   |             |                               |
| 4        | b | ii | Method B                                                                                                                                                                              | 1 mark                                    | 2           | 1 mark for each part          |
|          |   |    | Gas is lost in method A be<br>starting mass taken<br>or<br>gas is lost before all acid i<br>or<br>no total mass of all reacta<br>start of experiment<br>or<br>equivalent response     | fore<br>is added<br>ints at the<br>1 mark |             |                               |
| 5        | a |    | Al <sup>3+</sup> (OH <sup>-</sup> ) <sub>3</sub>                                                                                                                                      |                                           | 1           | Charges of ions must be given |
| 5        | b | i  | $16 \times 0.7 = 11.2$                                                                                                                                                                |                                           | 1           |                               |
| 5        | b | ii | <ul> <li>Named active ingredient with appropriate reason. eg</li> <li>magnesium hydroxide – cheapest/doesn't fizz</li> <li>aluminium hydroxide – need to take least amount</li> </ul> |                                           | 1           |                               |
| 6        | a |    | Any value above 7                                                                                                                                                                     |                                           | 1           |                               |
| 6        | b |    | ethene                                                                                                                                                                                |                                           | 1           |                               |

| Question |        | on | Expected response                                                                                                                                                                                                                                                                                  | Max<br>mark | Additional guidance                                |
|----------|--------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------|
| 6        | с      |    | Ascorbic acid<br>or<br>Vitamin C<br>or<br>benzoic acid                                                                                                                                                                                                                                             | 1           |                                                    |
| 7        | a      |    | Group/family/chemicals with<br>same general formula<br>and<br>same/similar (chemical)properties                                                                                                                                                                                                    | 1           | Both parts required for 1 mark                     |
| 7        | b      | i  | Diagram showing carbon with four<br>hydrogen atoms: each of the four<br>overlap areas must have two<br>electrons in or on overlap area<br>(cross, dot, petal diagram) Does<br>not need to show tetrahedral shape.<br>eg<br>H<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H | 1           |                                                    |
| 7        | Þ      | ii | Weak bond attraction between<br>molecules<br>or<br>Weak intermolecular attractions                                                                                                                                                                                                                 | 1           | Do not accept — Weak bonds/ weak<br>covalent bonds |
| 8        | a<br>b | i  | O-H<br>or<br>Name of functional group<br>or<br>OH written beside question and not<br>circled<br>addition                                                                                                                                                                                           | 1           | Do not accept addition                             |
|          |        |    | or<br>hydration                                                                                                                                                                                                                                                                                    |             | polymerisation                                     |

| Question |                                                                                                                                                                                                                                     | on                                   | Expected response                                                                                  |                              | Additional guidance        |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------|----------------------------|
| 8        | Ь                                                                                                                                                                                                                                   | ii                                   | Correct shortened/full structural<br>formula for<br>3-methylbutan-1-ol<br>or<br>3-methylbutan-2-ol |                              |                            |
| 8        | 8 c A lot of land used for crops to make<br>ethanol and not feed people<br>or<br>just as harmful to the environment<br>as gasoline<br>or<br>low yield<br>or<br>deforestation                                                        |                                      | 1                                                                                                  |                              |                            |
| 8        | d i Correct shortened<br>or<br>full structural formula for ethanoic<br>acid<br>or<br>Correct mixture of full and<br>shortened formula                                                                                               |                                      | 1                                                                                                  |                              |                            |
| 8        | d                                                                                                                                                                                                                                   | d ii Carboxylic acid / alkanoic acid |                                                                                                    |                              | Do not accept - acid       |
| 9        | a                                                                                                                                                                                                                                   |                                      | Exothermic                                                                                         |                              | Do not accept - combustion |
| 9        | <b>b i</b> 33.44 on its own = 3 marks<br>$E_H = cm\Delta T = 4.18 \times 0.2 \times 40 = 33.44$<br>and using concept $cm\Delta T$ with<br>c = 4.18 1 mark<br>using data correctly ie<br>0.2 and 40 °C 1 mark<br>final answer 1 mark |                                      | 3                                                                                                  | 33.4 or 33 would be accepted |                            |

| Question |   | on | Expected response                                                                                                                                                                                                                                                                        | Max<br>mark | Additional guidance                                                                                                                                         |
|----------|---|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9        | Ь | ii | Any one from:<br>heat insulation<br>repeat to get average<br>move burner nearer to can<br>remove tripod and clamp can<br>stir water<br>thermometer not touching copper<br>can<br>use clay triangle on tripod<br>or any reasonable answer                                                 | 1           | One answer                                                                                                                                                  |
| 9        | С | i  | As the number of carbons increases<br>the energy released increases<br>or<br>As the number of carbons decreases<br>the energy released decreases<br>or<br>The energy $\frac{\text{increases}}{\text{decreases}}$ as the<br>number of carbons $\frac{\text{increases}}{\text{decreases}}$ | 1           | Do not accept<br>As the energy released increases<br>the number of carbons increases<br>As the energy released decreases<br>the number of carbons decreases |
| 9        | с | ii | Any value from 3520 to 3550                                                                                                                                                                                                                                                              | 1           |                                                                                                                                                             |

| Question |   | n Expected response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Max<br>mark | Additional guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10       |   | <b>3 marks:</b> The maximum available<br>mark would be awarded to a<br>student who has demonstrated a<br>good understanding of the chemistry<br>involved. The student shows a good<br>comprehension of the chemistry of<br>the situation and has provided a<br>logically correct answer to the<br>question posed. This type of<br>response might include a statement<br>of the principles involved, a<br>relationship or an equation, and the<br>application of these to respond to<br>the problem. This does not mean<br>the answer has to be what might be<br>termed an "excellent" answer or a<br>"complete" one. | 3           | <pre>2 marks: The student has<br/>demonstrated a reasonable<br/>understanding of the chemistry<br/>involved. The student makes some<br/>statement(s) which is/are relevant<br/>to the situation, showing that the<br/>problem is understood.<br/>1 mark: The student has<br/>demonstrated a limited<br/>understanding of the chemistry<br/>involved. The candidate has made<br/>some statement(s) which is/are<br/>relevant to the situation, showing<br/>that at least a little of the<br/>chemistry within the problem is<br/>understood.<br/>0 mark: the student has<br/>demonstrated no understanding of<br/>the chemistry involved. There is no<br/>evidence that the student has<br/>recognised the area of chemistry<br/>involved or has given any statement<br/>of relevant chemistry principle.<br/>This mark would also be given if the<br/>candidate merely restates the<br/>chemistry given in the question.</pre> |
| 11       | a | gfm = 60 1 mark<br>28/60 × 100 1 mark<br>Final answer 46·6% 1 mark<br>46·6 / 46·7 / 47 on its own 3 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3           | Allow follow through from<br>incorrect gfm<br>Do not allow 46 on its own                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11       | b | Speeds up reaction<br>or<br>Less energy/temperature/ heat<br>required<br>or<br>equivalent response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1           | Do not accept on their own:<br>• can be reused<br>• not used up<br>• saves money<br>• cheaper<br>• more economical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12       | a | number of half-lives is 2 1 mark<br>1⁄4 of 2 = 0·5 g 1 mark<br>0·5 g 2 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2           | Allow follow through if number of half-lives is incorrect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Question |   |  | Expected response                                                                                                               | 9                                                           | Max<br>mark | Additional guidance                                                                                                                       |
|----------|---|--|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 12       | b |  | short half-life<br>or<br>would not last long in the b<br>or<br>gamma would go right throu<br>or<br>equivalent response          | ody<br>ugh body                                             | 1           |                                                                                                                                           |
| 12       | с |  | beta<br>or<br>$\beta$<br>or<br>$_{-1}^{0}$ e<br>or<br>$_{-1}^{0}\beta$                                                          |                                                             | 1           | Do not accept electron                                                                                                                    |
| 13       | a |  | gfm 143·5g<br>1·435 / 143·5 = 0·01 mol<br>0·01 mol on its own                                                                   | 1 mark<br>1 mark<br>2 marks                                 | 2           | Allow follow through if gfm<br>incorrect                                                                                                  |
| 13       | b |  | Answer from part (a) / 0·02<br>Correct answer<br>0·01 / 0·02<br>= 0·5 mol l <sup>-1</sup><br>0·5 mol l <sup>-1</sup> on its own | 2 1 mark<br>1 mark<br>1 mark<br>1 mark<br>1 mark<br>2 marks | 2           | Allow follow through from answer to<br>part (a)<br>If correct relationship but volume<br>not converted to litres eg 0.01/20<br>max 1 Mark |

## [END OF SPECIMEN MARKING INSTRUCTIONS]