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Advanced Higher Applied Mathematics 2012
Statistics Solutions

A1. P(R | Rf )

=
P(Rf ∩ R)

P(Rf ) =
P(R ∩ Rf )

P(Rf )

=
P(R) P(Rf | R)

P(R) P(Rf | R) + P(R) P(Rf | R
) 1

=
0·2 × 0·9

0·2 × 0·9 + 0·8 × 0·05
1,1

=
0·18

0·18 + 0·04
=

9
11

1

{other methods acceptable}

A2. (a) Quota or convenience sampling. 1

Telephone contact rules out certain members of the general
public from inclusion in the sample. 1

(b) Assuming that the sample may be regarded as a random one 1
from the population, an approximate 95% confidence interval is

p ± 1·96
p(1 − p)

n
1

where  and 1p =
539
1013

n = 1013

giving a 95% CI of . 1(0·5014,  0·5628)

The lower confidence limit exceeds 50% so that the claim is supported. 1

A3.   Assuming that the weights of climbers and packs are independent we have: 1

T = C1 + C2 +  …  + C8 + P1 + P2 +  …  + P8 1

µT = 80 + 80 +  …  + 30 + 30 +  … = 8 × 80 + 8 × 30 = 880 1

σ2
T = 16 + 16 +  …  + 4 + 4 +  … = 8 × 16 + 8 × 4 ≈ 12·652 1

P(T > 900)

= P(Z >
900 − 880

12·65 ) 1

 = P(Z > 1·58) = 0·0571 1



A4. (a) x¯ = 500·265 1

H0 : µ = 500·30 H1 : µ ≠ 500·30 1

z =
x¯ − µ
σ / n

=
500·265 − 500·30

0·1 / 10
≈ −1·11 1

Since  we accept the null hypothesis 1z > −1·96
and there is no evidence that the mean differs from 500.30ml 1

(b) A -test would be required if the fill volume standard deviation is unknown.1t
This could change the conclusion since both the standard deviation and the
critical value will be different. 1

A5. tc = 2·069 1

| t | > 2·069

⇒
| r  |

1 − r2

23

> 2·069 1

⇒ r2 > 4·281 ×
1 − r2

23
1

⇒ 6·373r2 > 1

⇒ r2 > 0·157 1

⇒ | r  | > 0·40

Display the data in a scatter plot as there could be 1
a non-linear relationship between  and . 1Y X

A6. (a)  : extinction counts follow a Poisson distribution.H0

:  they do not follow a Poisson distribution. 1H1

(b) P(X ≤ 1) = f (0) + f (1)

= e−4·21 +
4·21e−4·21

1!
1

= 0·01485 + 0·06250 = 0·0773

Expected frequency 1= 76 × 0·0773 = 5·88

The amalgamation of two sets of frequencies is to comply with the guideline
that around 80% of the expected frequencies should be more than 5. 1

(c) The critical value of chi-squared with  df9 − 1 − 1 = 7
for a test at the 0·1% significance level is 24·321. 1

Since 37·57 exceeds 24·321 the null hypothesis is rejected at the 0.1% level1
of significance so it may be concluded that there is strong evidence that
extinctions may not be considered as random events in time. 1



A7 (a) Slope 1=
Sxy

Sxx
=

995·04
1592·89

≈ 0·6247

SSR 1= Syy −
(Sxy)2

Sxx
= 817·67 −

995·042

1592·89
≈ 196·09

1⇒ s2 =
196·09

7
= 5·2932

1t =
b
s

Sxx

=
0·6247
5·293
1592·89

≈ 4·71

 1
and so we would reject the null hypothesis that the slope is zero, at the 1% level.1
4·71 > t7, 0·995 = 3·499

(b) 1a = y¯ − bx¯ = 26·656 − 0·6247 × 64·11 ≈ −13·41
1x = 71 ⇒ y = −13·41 + 0·6247 × 71 ≈ 30·96

(c) Construct a residual plot and check it out for random distribution etc. 1
Find a prediction interval for the weight of the dog, 1

A8. (a) The 3-sigma limits are 1µ ± 3
σ
n

 i.e. 1= 10 ± 3 ×
0·2

4
= 10 ± 0·3 (9·7 and 10·3)

The probability that a point plots outwith a 3-sigma limit is
1P(Z < −3) + P(Z > 3) = 2 P(Z > 3)
1= 2 (1 − 0·9987) ≈ 0·0026

(b) The probability that a point falls above a 2-sigma limit is
1P(Z > 2) ≈ 0·0228

Since consecutive samples may be regarded as independent
the binomial distribution gives the probability of two from
three consecutive points above the upper limit to be

1( ) p2q = ( ) 0·02282 × 0·9772 ≈ 0·00153
2

3
2

Doubling takes into account the identical probability of two
from three consecutive points below the lower limit. 1

2 × ( ) 0·02282 × 0·9772 ≈ 0·00303
2

which is of the same order of magnitue as 0·0026. 1

(c) P(Z > 1) = 0·1587 1

2 × ( ) 0·15874 × 0·8413 15
4

= 0·0053 1



A9. H0 : ηW = ηNW

1H1 : ηW > ηNW

Rank sum W
= 1 + 3·5 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 18

1= 103·5

E (W) = 1
2n (n + m + 1) = 1

2 × 12 × 25 = 150
1V (W) = 1

12nm(n + m + 1) = 1
12 × 144 × 25 = 300

1,1P(W ≤ 103·5) = P(Z ≤
104 − 150

300 )
1= P(Z ≤ −2·66) = 0·0039

Since  we reject the null hypothesis at the 1% level. 10·0039 < 0·01

The null hypothesis  is equivalent to . 1H0 : ηW = ηNW H0 : ηW − ηNW = 0

The fact that the 95% confidence interval does not include 0 confirms 
rejection of the null hypothesis at the 5% level of significance. 1

The trial provides evidence that drinking water before food aids weight loss. 1

END OF SECTION A



Section B

B1. The general term is given by

( ) x2(8 − r)(3x)r
18

r

 = ( ) 3rx16 − r8
r

1,1

For ,x13

16 − r = 13 ⇒ r = 3 1
The corresponding coefficient is

8!
3! 5!

× 33 = 1512 1

{Note: some candidates may start from:  leading to .}( ) x2r(3x)8 − r8
r

r = 5

B2. (a)

y =
x

x2 + 4
⇒

dy

dx
=

(x2 + 4) − x. (2x)
(x2 + 4)2 1M, 1

x = 2 ⇒
dy

dx
=

8 − 8
82

= 0. 1

(b)

∫ e−2t dt = (−1
2) e−2t + c








 (−1
2)1 for

 e−2t1 for

B3. (a)
M2 = ( ) ( )1 0 0

3 1 0
0 0 λ

1 0 0
3 1 0
0 0 λ

1M

 = ( ) 1
1 0 0
6 1 0
0 0 λ2

(b)
M3 = ( ) ( ) = ( ) 1

1 0 0
6 1 0
0 0 λ2

1 0 0
3 1 0
0 0 λ

1 0 0
9 1 0
0 0 λ3

M + M2 + M3 = ( ) + ( ) + ( )1 0 0
3 1 0
0 0 λ

1 0 0
6 1 0
0 0 λ2

1 0 0
9 1 0
0 0 λ3

= ( ) 1
3 0 0
18 3 0
0 0 λ + λ2 + λ3

(c) detM = 1 × (1 × λ) + 0 + 0 = λ 1

Hence the matrix  has an inverse when . 1M λ ≠ 0



B4. 1
x (x + 1)

=
A

x
+

B

x + 1
1M

1 = A(x + 1) + Bx

x = 0 ⇒  A = 1 1

x = −1 ⇒  B = −1 1
1

x (x + 1)
=

1
x

−
1

x + 1

V = ∫ πy2dx ⇒ V = π ∫
3

1 ( 1

x2 + x)2

dx 1M

= π ∫
3

1
(1
x

−
1

x + 1) dx 1

= π [ln x − ln (x + 1)]3
1 1

= π {[ln 3 − ln 4] − [ln 1 − ln 2]}
= π ln

3
2

(≈ 1.274 to 3 s.f.) 1

B5. dT

dx
= k (180 − T)(a)

∫
dT

180 − T
= ∫ k dx 1M

− ∫
(−1)

180 − T
 dT = ∫ k dx

− ln (180 − T) = kx + c 1
Since  when T = 4 x = 0

− ln 176 = c 1

⇒ ln (180 − T) − ln 176 = −kx

ln
180 − T

176
= −kx

180 − T

176
= e−kx

180 − T = 176e−kx 1

i.e.T = 180 − 176e−kx.
(b) When , x = 1 T = 30

e−k =
150
176

1

⇒ k ≈ 0·16 1
(c) Using  and  in  givesk = 0·16 T = 80 T = 180 − 176e−kx

80 = 180 − 176e−0·16x 1

e−0·16x =
100
176

Hence

⇒ −0·16x = ln
100
176

1

⇒ x ≈ 3.533 hours ≈ 212 minutes 1

So the turkey should be cooked after 3 hours 32 minutes (or 212 minutes).
END OF MARKING INSTRUCTIONS


