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Higher Certificate, Module 5, 2008. Question 1

() P(X=xY=y)=P(Y=y|X=x)P(X=x).

Table of P(X=x, Y =y).

Values of Y
1 2 3 4 Total
1 1/16 1/16 1/16 1/16 1/4
Values of 2 1/12 1/12 1/12 1/4
X 3 1/8 1/8 1/4
4 1/4 1/4
Total 3/48 7/48 13/48 25/48 1

(i)  The marginal probability distribution of Y is as follows, copied from the
margin of the table above.

P(Y=1)=%(=%j; P(Y=2)=g; P(Y:3)=%; P(Y=4)=E.

E(Y) = (1><1J+(2xlj+(3x£j+(4x§j = 156 = E
48 48 48 48 48 4

E(Y?) = 1 |4 ax o[ 9x 23 [ 16x 22| = 248 _ 137
48 48 48 48 48 12

12 \ 4 48

e
+[8x%j+(9X%J+(12x%j+(16x%j

:%(3+6+9+12+16+24+32+54+72+192):t—?.

. Var(Y)

Solution continued on next page




E(X)= (1+2+3+4)x%:% (and E(Y) = 13/4, see above).

Cov(r)- 420 (10,13) 1 30 _5

=—(420—390) =—=—,
48 48 48 8

(V) U=X+7.

1
P(U=2)=P(X=1,Y=1)=—
(U=2)=P( )
1
P(U=3)=P(X=1Y=2)=—
(U=3)= P )
P(U=4)=P(X=1,Y:3)+P(X=2,Y=2)=i+i=1
16 12 48
P(U=5)=P(X=1Y=8)+P(X=2,Y =8)=—+-—=L
16 12 48
P(U=6)=P(X=2Y=4)+P(X=3y=3)=—+2=10_5
12 8 48 24

P(U=7)=P(X=3Y=4)=

P(U=8)=P(X=4,Y=4)=

N, 0|k

No other values of U have non-zero probability.



Higher Certificate, Module 5, 2008. Question 2

Probability generating function, z(¢)=E(¢*).
Moment generating function, m (¢)=E(e").

Relationship: m(z):,[(et).
O 0)-r(r-n =3 ] )

= j(pt)h (1-p)™" =(pt+1-p)" (using the binomial theorem).

dr dr

n-1

iy  E(x)=%E . 4E_ 1- S E(X)=np.
(ii) (X) ol R np(pt+1-p)", " E(X)=np
E(x(x-0)=2Z . LE 1)y (pr+1- )

dt® | dt?

LE(X(X-1)=n(n-1)p°.
LE(XH)=n(n-1)p*+E(X)=n(n-1)p*+np.
~Var(X)=n(n-1)p* +np—n®p* =n’p* —np* + np—n’ p* = np(1 - p).
[Alternatively, could directly use Var(X) = z"(1) + E(X)(1 — E(X)).]

d’r d’r

=il a2 P (pralop)

(i) E(XX-1)(X-2)

LE(X(X-D)(X-2))=n(n-1)(n-2)p°.
L E(X®)-3E(X*)+2E(X)=n(n-1)(n-2)p°,
E(X3):n(n—l)(n—Z)p3+3n(n—1)p2 +3np —2np

=n(n—l)(n—2)p3+3n(n—1)p2 +np.

(iv) Ty, (t):(pt+1—p)"’ (izl, 2,...,m).

oy ()= [(pt+1-p)" =(pt+1-p)™",

i=1

which is the pgf of B(X#,, p).

~. by the 1-1 correspondence between pgfs and distributions, ¥ ~ B(Xn,, p).



Higher Certificate, Module 5, 2008. Question 3

(1) E(X)= /TZJ-: x’e ™ dx

=17 [—ﬂuxze’xM }: +2/1j‘: A% xe ™ dx

Note that the second integral is simply the integral of the pdf
= [0-0]+(2Ax1) = 24

~. the method of moments estimator A satisfies 21=X. ~1==X.
(i) E(X)=E(X)=24.
E(i) :EE()?) — 2 forall 2, i.e. A is unbiased for A.
2
E(XZ) = /1’2.[: e dx=1" [—/bcae’x“1 }: + 3ij‘ow/1’2x2e’xmdx
=31E(X)=64%

. Var(X)=E(X?)-(E(X)) =64>-42? =222,

Var()?) = var(X) = 22° .
n n
Var(i):Var(§]:%Var()?)=§—z.
n

As ] is unbiased and Var(i)—>0 as n— o, 1 is consistent.

~ 2 2
(i) For n=3,Var(7)= ; ) =%.
X

) 1 1 1 3 312
Var(/l) = avar(Xl)+EVar(X2)+aVar(X3) = §Var(X) TR

. Var(4 2
.. relative efficiency of 4 = ( ) _ A 16 8

—X— = —,
6 317 9

Var (1)

As the relative efficiency is less than one, A is preferred.



(1)

(iii)

(iv)

Higher Certificate, Module 5, 2008. Question 4

f(x)=(2720)" e (for —0<x, <o0).

Likelihood L(H) _ ﬁ{(zﬂe)—1/2 e_x"zlw} _ (27[0)7;1/2 oI 120

i=1

eu10) - ofan) o) 5

2

2
dlogL = —iJrz—x"2 which on setting equal to zero gives solution 6 = Zi
deo 20 260 n

2 2
To investigate whether this is a maximum, consider d IO?L = nz — Z)g :
do 20° 0

. A d®log L n nd n
Inserting 8 =6 gives = ———— = — <
J J do’ 20° & 26°

~.0=3x% [n maximises log L(0); thus = X*/n is the maximum likelihood
estimator of 6.

( d’ IOng n ZE(XiZ)
E| - > 3 .
20 0

a0 )" 207

As the mean is 0, we have 6= Var(X) = E(X?).

2
L E d IO?L _ n2+£ziz
de 200 & 20

2

..For large n, 6~N [9, Ej , approximately.
n

5-100_15.
100

2
.. approximate 95% confidence interval is given by 10 £1.96, / 2:()1(;)

e itis 10£1.96v2, i.e. (7.23,12.77).
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