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Higher Certificate, Module 2, 2008.  Question 1 
 
(i) (a) The number of PINs with four different digits is 10×9×8×7 = 5040. 
 

(b) We require exactly three different digits.  We can choose the face value of 

the pair in 10 ways.  We can then choose two other different digits in  = 

36 ways.  The number of distinguishable linear arrangements of two like and 

two unlike objects is 
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 = 12, so the total number of 4-digit PINs with 

exactly three different digits is 12×10×36 = 4320. 
 

(c) We require two different digits, each occurring twice.  We can choose the 

face values of the two pairs in  = 45 ways.  The number of 

distinguishable linear arrangements of two (different) pairs of like objects is 
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 = 6, so the total number of 4-digit PINs with two pairs of (different) 

like digits is 6×45 = 270. 
 

(d) We require exactly three digits the same.  We can choose the face values of 
the triple and of the singleton in 10×9 ways (note that aaab and bbba are 
different PINs).  The number of distinguishable linear arrangements is 4 
(corresponding to 4 different places for the singleton), hence there are 4×904 
= 360 possible PINs. 

 

(ii) (a) There are altogether  = 210 ways of choosing the 4 digits of the second 

PIN, each being equally likely with probability 1/210. 
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Now consider the number of ways of choosing 4 digits for the second PIN 
such that k of them (for k = 0, 1, 2, 3, 4) are in common with digits in an 

arbitrary given PIN of four different digits.  There are  ways of choosing 

the k digits that are in common and  ways of choosing the 4−k digits 

that are not in common.  So the total number of ways is . 
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So the required probability is   
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Solution continued on next page 
 



 

(b) P(X = 0) = 
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  P(X = 2) =
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  P(X = 3) = 
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  =  1.6. 

 
 



Higher Certificate, Module 2, 2008.  Question 2 
 
 

(i) 1 = ( ) ( ) ( )1 331 2
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so c = ¾ or 0.75. 
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[The graph should of course be a smooth curve;  due to the limits of electronic 
reproduction, it may not appear so.  The maximum is at (0, 0.75), zeros at (±1, 0).] 

 
 
(ii) For |x| ≤ 1, 
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For x < −1, FX(x) = 0;    for x > 1, FX(x) = 1. 
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(iii) E(X) = 0 by symmetry (or by integration). 
 

∴ Var(X) = E(X2) = ( )
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and SD(X) = 1/√5 = 0.447 to 3 significant figures. 
 



Higher Certificate, Module 2, 2008.  Question 3 
 
 

X ~ N(0, 1),   Y ~ N(0, 1);      X and Y are independent 
 
 
(i) P(3X > 4Y + 2) = P(3X − 4Y > 2), 
 

 = P(V > 2),      where V = 3X − 4Y ~ N(0, 32 + 42 = 25). 
 

P(V > 2) = P(Z > 2 0
5
−  = 0.4   [where Z ~ N(0, 1)] ) = 1 − Φ(0.4) = 0.3446. 

 
Since X and Y are independent, P(X ≤ x, Y ≤ x) = P(X ≤ x).P(Y ≤ x) = [Φ(x)]2. 

 
 
 
(ii) (a) max(X, Y) ≤ w ⇔  (X ≤ w)∩(Y ≤ w), 
 

so P(max(X, Y) ≤ w) = [Φ(w)]2 from above. 
 
 

(b) Q1 satisfies ( )
4
11 =QFW ,  so  ( )2 11

4
QΦ = . 

 

( ) ( )111 , and 1 0.5
2

Q Q − 0∴Φ = = Φ = . 

 

Similarly, ( ) ( )3 33 3 0.866
4 2WF Q Q= ⇒Φ = = ,  so  

= 1.108 using linear interpolation in the Society's Statistical tables for 
use in examinations [1.11 was allowed as the (3 s.f.) answer in the 
examination, being the nearest tabular entry]. 

( )13 0.86Q −= Φ 6

 
 
 
(iii) P(W outside (Q1, Q3)) = 0.5,  so N ~ B(100, 0.5) which we approximate by 

N(50, 25).  Hence 
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Φ )  = 1 − 0.9332 = 0.0668. 

 



Higher Certificate, Module 2, 2008.  Question 4 
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This can be used recursively to find the probability mass function.  Start with 

(0)Xp e λ−= ;  then (1) (0)X Xp p e λλ λ −= = ,  2(2) ( / 2) (1) ( / 2)X Xp p e λλ λ −= = , 
and so on. 

 
 

(ii) E(X) = 
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putting y = x − 1 in the last summation and noticing that this re-creates the 
probability mass function.  Similarly, 
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putting y = x − 2 in the last summation. 

 
Hence Var(X) = E[X(X − 1)] + E(X) − {E(X)}2 = λ2 + λ − λ2 = λ, as required. 

 
 

(iii) P(W = w) = 
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confirming that W ~ Poisson(λ + μ).  Since the general parameter λ has been 
shown in part (ii) to represent the mean, it follows that E(W) = λ + μ. 

 
 
(iv) (a) P(exactly one breakdown) 
 

= P(A fails once, B does not fail) + P(B fails once, A does not fail) 
 

= P(A fails once) × P(B does not fail) 
 

+ P(B fails once) × P(A does not fail) 
 

= (λe−λ×e−μ) + (μe−μ×e−λ) = (λ + μ)e−(λ + μ). 
 

∴the required conditional probability is 
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=   =  0.8. 
 

Solution continued on next page 
 



(b) W = total number of breakdowns ~ Poisson(2.5). 
 

∴ P(W > 2) = 1 − P(W ≤ 2) 
 

( )2.5 21 1 2.5 (2.5 /2 )e−= − + +  
 

2.51 6.625e−= −   =  1 – 0.5438  =  0.456 
 

(alternatively, this can be obtained from the cumulative Poisson 
probabilities in the Society's Statistical tables for use in examinations). 

 
 
 

(c) T ~ Poisson(50×2.5) or Poisson(125), which we approximate by 
N(125, 125). 

 
The upper 5% point of N(125, 125) is 125 + 1.6449√125 = 143.4. 

 
Since T0.95 must be an integer and the question says "will be exceeded 
on at most 5% of days", we round up to T0.95 = 144. 
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