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(i) The law of total probability for a partition {Ei} of S is 
 

( ) ( ) ( )
1

n

i i
i

P A P A E P E
=

= ∑ . 

 
Using ( ) ( ) ( ) ( ) ( )j j jP A E P E A P A P A E P E∩ = = j , we have 

 

( ) ( ) ( )
( )

( ) ( )
( ) ( )

1

j j j j
j n

i i
i

P A E P E P A E P E
P E A

P A P A E P E
=

= =

∑
 . 

 

 
(ii) Let Ei be the event "i is transmitted", for i = 0 or 1, and let A be the event 

"there is an error at the receiver". 
 

(a) ( ) ( ) ( ) ( ) ( )0 0 1P A P A E P E P A E P E= + 1  

 ( )( ) ( )( )2 21 1
2 20 N 1, . 0 N 1, .P X X P X Xσ σ= ≤ + > −∼ ∼  

 1 1 1
2 2

P Z P Z 1
σ σ

⎛ ⎞ ⎛= ≤ − + >⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

     where ( )N 0,1Z ∼  

 1
σ

⎛= Φ −⎜
⎝ ⎠

⎞
⎟      where Φ is the standard Normal distribution function. 

 

When σ = ½, ( ) ( )2 0.0228P A = Φ − = . 
 

 
(b) Let U be the random variable denoting the number of voltage values at 

the receiver that are greater than 0 (out of 3).  The receiver decides that 
0 was sent if the value of U is 2 or 3, and that 1 was sent if the value of 
U is 0 or 1. 

 
So we now have 

 

( ) ( ) ( ) ( ) ( )0 0 1P A P A E P E P A E P E= + 1  
 

 = ( ) ( )0 1
1 1
2 20 or 1 . 2 or 3 .P U E P U E= + = . 

 
If E0 applies, i.e. 0 was sent, we have (see (ii)(a)) that P(voltage value 
at receiver > 0) = P(N(1, σ  2) > 0) = 0.9772.  So U ~ B(3, 0.9772), and 
P(U = 0 or 1 ⏐ E0) = (0.0228)3 + 3(0.9772)(0.0228)2 = 0.00154. 

 
Similarly, if E1 applies, i.e. 1 was sent, we have P(voltage value at 
receiver > 0) = P(N(–1, σ  2) > 0) = 0.0228.  So U ~ B(3, 0.0228), and 
P(U = 2 or 3 ⏐ E1) = 3(0.0228)2(0.9772) + (0.0228)3 = 0.00154. 

 
1 1
2 2( ) 0.00154 0.00154 0.00154P A∴ = × + × = . 
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(i) (a) ( ) ( ) ( ) ( ) ( )W UF w P W w P w U w F w F w= ≤ = − ≤ ≤ = − −U  

( ) ( ){ }1U UF w F w= − −    by symmetry 

( )2 UF w= 1−      for w ≥ 0. 
 

( ) ( ) ( )2W W U
df w F w f

dw
= = w      for w ≥ 0. 

 
 

(b) If ( )2N 0,U τ∼ , which is symmetric about 0, then the result in part (a) 

gives that W U=  has pdf  ( )
2

2

12 exp
22w
wf w
ττ π

⎛ ⎞
= × −⎜

⎝ ⎠
⎟   for w ≥ 0. 

 

( ) 2 2/ 2
20

2 wE W we dwτ

πτ
∞ −= ∫  

 

= ( )2 2/ 2 2
2 0

2 w

w
e τ τ

πτ

∞
−

=
⎡ ⎤−⎣ ⎦   =  [ ]

2 22 20 1τ τ
π π

− − =  . 

 
 

( ) 2 22 2 /
20

2 w 2E W w e τ

πτ
∞ −= ∫ dw          (by parts) 

 

= { }2 2 2 22 / 2 2 / 2
2 00

2 . w ww e e dwτ ττ τ
πτ

∞ ∞− −⎡ ⎤− +⎣ ⎦ ∫  
 

consider pdf of N(0, τ 2) 
 

= { }2 2
2

1
2

2 0 . 2 .τ τ π τ
πτ

+ = . 

 
Note.  An alternative approach is to obtain a 
general expression for E(Wm) for any integer m > 0 
using gamma functions: 

 

( )
/ 22 1

2

m m
m mE W τ

π
+⎛ ⎞= Γ⎜ ⎟

⎝ ⎠
. 

 

( )
2

2 22 2Var 1W ττ τ
π π

⎛ ⎞∴ = − = −⎜ ⎟
⎝ ⎠

 . 

 

(ii) For X, Y independent N(μ, σ 2) random variables, ( 2N 0, 2 .U X Y )σ= − ∼   Using 

(i)(b) with 2 2 2τ σ=  gives 2E U σ
π

⎡ ⎤ =⎣ ⎦  .  This is the Gini statistic of N(μ, σ 2). 
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(i) ( ) ( )

2020! 1 1,
! ! 20 ! 4 2

y y

P X x Y y
x y x y

−
⎛ ⎞ ⎛ ⎞= = = ⎜ ⎟ ⎜ ⎟− − ⎝ ⎠ ⎝ ⎠

   for x and y from 0 to 20. 

 

( )
10 1020! 1 15, 10 0.04336

5!10! 5! 4 2
P X Y ⎛ ⎞ ⎛ ⎞∴ = = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 . 

 
 
(ii) Each plant, independently of all the others, has probability ¼ of having red 

flowers.  The number of plants is fixed (20).  These are the conditions for a 
binomial distribution, so X ∼ B(20, ¼). 

 
 
(iii) As in (ii), the number of plants, W, with white flowers is also B(20, ¼).  

( )
20 193 3 11 20 0.0243

4 4 4
P W ⎛ ⎞ ⎛ ⎞ ⎛ ⎞≤ = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 . 

 
 
(iv) Given Y = y, there are exactly 20 – y plants that are not pink, and they are 

equally likely to be red or white.  Independently, each of these 20 – y therefore 
has probability ½ of being red.  Hence the required conditional distribution is 
B(20 – y, ½). 

 
 
(v) Let X be the number of the remaining 15 plants having red flowers.  As in part 

(ii), the distribution of X is binomial, now with n = 15:  X ~ B(15, ¼). 
 

( ) (3 1 2P X P X )∴ ≥ = − ≤  
 

        =  1 – 0.2361        (from tables) 
 

        =  0.7369 . 
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(i) As X and Y are independent, their joint pdf is 
 

( ) ( ) ( ) ( )1
21,

2
x y

XY X Yf x y f x f y e
xyπ

− +
= =  

 

(for x > 0, y > 0). 
 

XU
Y

= , V = Y;  hence X = UV and Y = V. 

 

The Jacobian of the transformation is 
0 1

x x
u v
y y
u v

v u
v

∂ ∂
∂ ∂
∂ ∂
∂ ∂

= = . 

 
Thus the joint pdf of U and V is 

 

( ) (, ,UV XY )f u v f x y v=  
 

( ) / 2 ( 1) /

2

1 1
22

uv v u vv e e
uuv ππ

− + − += = 2      for u > 0, v > 0. 

 
 

The marginal distribution of U is 
 

( ) ( )
( 1) / 2 ( 1) / 2

0
0

1 1 2
12 2

u v u v
U v

v

f u e dv e
uu uπ π

∞
∞ − + − +

=
=

⎡ ⎤
= = −⎢ ⎥+⎣ ⎦

∫  

 

( )
1
1u uπ

=
+

, as required.    [Note:  this is the pdf of F1,1.] 

 
 

(ii) If W1, W2 are independent N(0, σ 2), then 
2 2

1
2 andW W2

2σ σ
 are independent  

random variables. 

2
1χ

 

Hence 
2

1
1,1

2

.WU F
W

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∼  

 
Now let T U= .  Using the formula for the pdf in a monotonic 
transformation, the pdf of T can be written down as 

 

( ) ( ) ( ) ( )
2

2

1. 2
1 1T U

duf t f t t
dt t t tπ π

= = =
+ + 2

2        (for t > 0). 
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( )
1

( )

xx ef x
α α θθ

α

− −

=
Γ

  for x > 0, where 1

0
( ) xx e dxαα

∞ − −Γ = ∫  

 

(i) ( ) ( ) ( ) ( )
( )

1
1

0 0

x
t xtX tx

X
x eM t E e e x e d

α α θ α
θαθ θ

α α

− −∞ ∞ − −−= = =
Γ Γ∫ ∫ x  . 

 
If t < θ  this integral converges to give (by substituting (θ  – t)x = u) 
 

     ( ) ( ) ( )
( )1

1 ( / )XM t
tt
1

αα

α

θ α
α θθ

⎛
= Γ = ⎜Γ −− ⎝ ⎠

⎞
⎟      (for t < θ). 

 
 

( ) ( )' 0XE X M= .  We have ( )
( )

'
1( )X

dM t
dt t t

α α

αα

θ αθ
θ θ +

⎛ ⎞
= =⎜ ⎟− −⎝ ⎠

, so E(X) = 1

α

α

αθ α
θ θ+ =   

 
( ) ( )2 '' 0XE X M= .  We have 

 

     ( ) ( )
( )

' '
21

1
( )X

dM t
dt t t

αα

αα

α α θαθ
θ θ ++

+⎛ ⎞
= =⎜ ⎟− −⎝ ⎠

,    so E(X 2) = 2 2

( 1) ( 1α

α

α α θ α α
θ θ+

)+ +
=  . 

 

( ) ( ) ( ) 2
22

2 2

1
Var( )X E X E X

α α
2

α α
θ θ θ

+
∴ = − = − =⎡ ⎤⎣ ⎦  . 

 
 

(ii) Z Xθα
α

⎛ ⎞= − + ⎜ ⎟
⎝ ⎠

;  hence, using the "linear transformation" result for mgfs, 
 

     ( ) 1t t
Z X

tM t e M t e
α

α αθ
α α

−

− − ⎧ ⎫⎛ ⎞ ⎛ ⎞= = −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

. 

 

( )log log 1Z
tM t t α α
α

⎧ ⎫∴ = − − −⎨ ⎬
⎩ ⎭

  =  
2 31 1 ...

2 3
t t tt α α

αα α α
⎧ ⎫

− − − − − −⎨ ⎬
⎩ ⎭

 

 
3

2 21 1 1... as
2 3 2

tt t α
α

= + + → → ∞  . 

 

Thus ( ) 21exp
2ZM t ⎛→ ⎜

⎝ ⎠
t ⎞

⎟  which is the mgf of N(0, 1).  So the distribution of Z tends 

to N(0, 1), i.e. Z is approximately N (0, 1) for large α.  Hence, by "unstandardising", X 

is approximately N 2,α α
θ θ

⎛
⎜
⎝ ⎠

⎞
⎟  for large α. 
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( ) 1f x
θ

= ,   so ( ) xF x
θ

=          (both for 0 < x < θ) 

 
 

(i)   The pdf of X(j) is   
( ) ( ) ( ) ( ) ( )1! 1

1 !1! !
j n jn F x F x f x

j n j
− −

−⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦− −
 

 

( ) ( )
( )1!

1 ! !

n jj

n

x xn
j n j

θ
θ

−− −
=

− −
         (0 < x < θ) 

 
 

( ) ( ) ( )
( )

( ) 0

!
1 ! !

n jj

j n

x xnE X d
j n j

θ θ
θ

−−
=

− − ∫ x  

 

( ) ( ) 0

! 1
1 ! !

j n jn x x dx
j n j

θ

θ θ

−
⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟− − ⎝ ⎠ ⎝ ⎠∫                   Put 

xy
θ

=  

 

( ) ( ) ( )
1

0

! 1
1 ! !

n jjn y y d
j n j

yθ −= −
− − ∫  

 

Use the beta function formula or repeated integration by parts 
 

( ) ( )
( )

( )
! !!

1 ! ! 1 ! 1
j n jn j

j n j n n
θ θ−

= =
− − + +

. 

 
 

( ) ( )1
2

( ) 0

!
( 1)!( )!

n jj

j n

x xnE X d
j n j

θ θ
θ

−+ −
=

− − ∫ x              Proceed similarly 

 
2 2! ( 1)!( )! ( 1)

( 1)!( )! ( 2)! ( 1)( 2
n j n j j j

j n j n n n )
θ θ+ − +

= =
− − + + +

 . 

 
 

( )
2 2 2 2

( ) 2

( 1) 1Var
( 1)( 2) ( 1) 1 2 1j

j j j j j jX
n n n n n n

θ θ θ+ +⎧ ⎫∴ = − = −⎨ ⎬+ + + + + +⎩ ⎭
 

 

( )( ) ( )
( )( )

( )
( ) ( )

22

2

1 1 2 1
1 1 2 1 2

j n j n j n jj
n n n n n

θθ + + − +⎡ ⎤ + −⎣ ⎦= =
+ + + + +

. 

 
 

From the E(X(j)) result above,   ( ) ( )( ) (1)
1( )

1 1 1n
n nE U E X E X

n n n
θ θ θ−

= − = − =
+ + +

. 

 
Solution continued on next page 



(ii) The joint pdf of X(1) and X(n) is 
 

( ) ( ) ( ) ( ) ( )( ) ( )( )2

( ) (1)1 1( , ) ( 1)
n

nn ng x x n n F x F x f x f x
−

⎡ ⎤= − −⎣ ⎦  
 

( )( )
( ) ( )

2
1

1

1
, 0

n
n

nn

n n x x
x x θ

θ

−− −
= < < < . 

 
 

( ) ( )
( ) ( )( ) ( ) ( )( ) ( ) ( )

(1) ( ) (1)

2 22

( ) (1) 1 10

1
n

n

n n n nn x x x

n n
E X X x x x x dx dx

θ θ

θ

−

= =

−⎡ ⎤
1∴ − = − −⎢ ⎥⎣ ⎦ ∫ ∫  

 

( )
( )

1
(1)

10

( )1
1

n

n

xn n
dx

n
θ θ

θ

+−−
=

+∫  

 

( )
( ) ( )

( )
( )( )

221 1
1 2 1

n

n

n n n n
n n n n 2

θθ
θ

+− −
= =

+ + + +
. 

 
 
Hence 
 

( ) ( ) 22

( ) (1)

1 1Var
( 1)( 2) 1n

n n nX X
n n n

θ
θ

− −⎛ ⎞− = − ⎜ ⎟+ + +⎝ ⎠
 

 

( ) ( )
( ) ( )

2 2

2

1 21
( 1) 2 1 1 2
n nn n

n n n n n
θ θ− −−⎧ ⎫= − =⎨ ⎬+ + +⎩ ⎭

1
+ +

. 

 
 
(iii) We have 
 

    
( )

2 2 2

( ) 2

1 1Var
( 1) ( 2) 2n

n n nX
n n n n n

θ θ+ +⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟ n+ + +⎝ ⎠ ⎝ ⎠
 

 

    
( )2 2 2

2

2 11 1 2Var
1 1 ( 1) ( 2) ( 1)( 2)

nn nU
n n n n n n

θ θ−+ +⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟− − + + −⎝ ⎠ ⎝ ⎠ +
 

 
 
Thus the variance of the first of these estimators is smaller, for all n, so use this. 
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(i) (a) For a discrete distribution, first construct the cdf F(x). 
 

x 1 2 3 4 5 6 ≥ 7 
P(X = x) 0.3333 0.2222 0.1481 0.0988 0.0658 0.0439 0.0878 

F(x) 0.3333 0.5555 0.7036 0.8024 0.8683 0.9122 1 
 

u1 = 0.1269 which is ≤ 0.3333, so x1 is taken as 1. 
 

u2 = 0.2473 which is ≤ 0.3333, so x2 is taken as 1. 
 

u3 = 0.5107 which is in the range (0.3333, 0.5555), so x3 is taken as 2. 
 

u4 = 0.9068 which is in the range (0.8693, 0.9122), so x4 is taken as 6. 
 
 

(b) For a continuous distribution, first find the cdf F(x).  Here we have 
 

20
0

1 1( ) 1
(1 ) 1 1 1

x
x dt xF x

t t x
⎡ ⎤= = − = − + =⎢ ⎥ x+ + +⎣ ⎦∫ +

 . 

 
So a given value u from U(0, 1) gives u = x/(1 + x);  so the required 
random variates are given by x = u/(1 – u). 

 
u1 = 0.1269  →  x1 = 0.1269/0.8731 = 0.1453. 

 

u2 = 0.2473  →  x2 = 0.2473/0.7527 = 0.3286. 
 

u3 = 0.5107  →  x3 = 0.5107/0.4893 = 1.0437. 
 

u4 = 0.9068  →  x4 = 0.9068/0.0932 = 9.7296. 
 
 
(ii) (a) For the exponential distribution with cdf ( ) 1 xF x e λ−= − , the inverse 

cdf method (as in (i)(b)) gives (1 log 1 )x u
λ

= − − .  For each of the 

machines A, B and C, we have λ = 0.01. 
 

Simulated lifetime of machine A is ( )1 log 1 0.1269 13.57
0.01Ax = − − = . 

 

Simulated lifetime of machine B is ( )1 log 1 0.2473 28.41
0.01Bx = − − = . 

 

Simulated lifetime of machine C is ( )1 log 1 0.5107 71.48
0.01Cx = − − = . 

 

The repair time has λ = 0.4, so ( )1 log 1 0.9068 5.93
0.4Rx = − − = . 

 
(b) A fails at time 13.57, and is replaced by C.  A returns from repair at 

13.57 + 5.93 = 19.50.  However, B does not fail until 28.41.  Hence the 
repair is complete before the next failure. 
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(i) ( ) ( ) ( ){ }1 2( ) 1 1 1k k kP Y k φ φ φ φ+ +> = − + − + − +"  

( ) ( ) ( ){ } ( )
( )

2 1
1 1 1 1

1 1

k
k φ φ

φ φ φ φ
φ

−
= − + − + − + =

− −
"  

( )1 kφ= −  

( )
( )

( )
1

11( )( | ) 1 (
( ) 1

k y
y

k
P Y k yP Y k y Y k P Y y

P Y k
φ φ

φ φ
φ

+ −
−−= + )∴ = + > = = = − = =

> −
. 

 
(ii) The probability that a customer who is being served in time interval t 

completes service in time interval (t + 1) is always φ, by (i), irrespective of 
how long that customer has been waiting for service previously.  Hence we 
have the Markov property. 

 
The transition probabilities are 

 

01 00, 1p pθ θ= = −  
 

( ) ( )1 11 , 1 , 1 2j j j j j jp p pφ θ θ φ θ φ− += − = − = − − + θφ  . 
 
 
(iii) For θ = ¼, φ = ½, the transition matrix is 
 

3 / 4 1/ 4 0 0 0
3/ 8 1/ 2 1/ 8 0 0

0 3/ 8 1/ 2 1/ 8 0
0 0 3/ 8 1/ 2 1/ 8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P

"
"
"
"

" " " " " "

. 

 
Hence for the stationary probabilities we have: 

 

0 1 0 0
3 3 3so that ;
4 8 2 1π π π π π+ = =  

 

0 1 2 1 1 0
1 1 3 1 3so that ;
4 2 8 2 4 2π π π π π π π+ + = = +  

 

1 1 1
1 1 3 1 3for 2, so that
8 2 8 4 4j j j j j jj 1jπ π π π π π π− + −+ + = ≥ = + + . 

 
The given probabilities (π0 = ½,  πj = 1/3 j for j = 1, 2, …) can be shown to 
satisfy these equations by substitution. 
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