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(i) If {E1, E2, …, En} partition S, then .  This is the law of 

total probability. 
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(ii) Let Y be the amount of time spent in the fitting room;  Y is exponential with 

parameter 1
3x

. 
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==
 < = = − = − ∫ −        (for y > 0). 

 
Since x takes the values 1, 2, 3, 4 each with probability ¼, we therefore have 

 

( ) ( )/ 3 / 6 /9 /12 11 1 1 1
4

y y y yF y e e e e− − − −= − + − + − + − ×      (using (i)). 

 

When y = 5 this is ( )5/3 5/ 6 5/9 5/121
4

e e e e− − − −− + + +1  
 

( )11 0.1889 0.4346 0.5738 0.6592 1 0.464
4

= − + + + = −  

 
and so P(Y > 5) = 0.464. 
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(b) Let X be the number of garments taken to the room.  Then 

 

( ) ( )1 51 2 3 4
4 2

E X = + + + = , 

 

( ) ( )2 1 11 4 9 16
4 2

E X = + + + =
5 , 

 

so Var(X) = 15 25 5
2 4 4

− = . 

 
[These results may be quoted, as X has a discrete uniform distribution.] 

 
 
 

Now, ( ) 3E Y X X= .  Also, because Y has an exponential distribution, 
 

( ) ( )2 2Var 3 9Y X X X= = . 
 

Thus 
 

( ) ( ){ } { } ( ) 153 3
2

E Y E E Y X E X E X= = = = . 

 
Also, 

 

( ) ( ){ } ( ){ }Var Var VarY E Y X E Y X= +  
 

 { } { }29 Var 3E X X= +  
 

 ( ) ( )29 9VarE X X= +  
 

 15 59 9
2 4

= × + ×  
 

 315
4

= . 
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(i) X + Y can take the values 0, 1, 2,…, n + m.  For these values, 
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Thus X + Y has the binomial distribution with parameters m + n and θ. 

 
[An alternative method is to use probability generating functions.] 
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 (i.e. a hypergeometric distribution). 
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(iii) Let X and Y be the numbers of failed components in the two networks. We have 
n = 20,  m = 30,  θ = 0.1,  z = 6 in the above notation. 

 
 

 P(X = 3 | X + Y = 6) = 





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50

3
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20

 = 20.19.18.30.29.28.6.5.4.3.2.1
3.2.1.3.2.1.50.49.48.47.46.45

 = 0.2913. 
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Hence 
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     (put r = 1, s = 0;  similarly for the others) 
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(i) XU
X Y

=
+

,  V = X + Y.    So X = UV and Y = (1 – U)V. 

 
The Jacobian of the transformation is 
 

( )1
1

x x
u v
y y
u v

v u
v u uv

v u

∂ ∂
∂ ∂
∂ ∂
∂ ∂

= = − +
− −

v= . 

 

The joint pdf of X, Y is 
1 1 ( )

( , ) , for 0 0
( ) ( )

x yx y ef x y  x > , y >
α β α β θθ

α β

+ − − − +

=
Γ Γ

. 

 
Hence the joint pdf of U, V is 
 

( ) ( ) 1 1 1(1 )
( , ) , (for 0, 0 1)

( ) ( )

vuv u v e v
g u v f x y J v > u

αα β β β θθ
α β

−+ − − −−
= = <

Γ Γ
<  

 

        { }{1 1 1(1 )
( ) ( )

vu u v e
α β

α β α βθ
α β

+
− − + − −= −

Γ Γ
}θ . 

 
This is of the form of a product 
 

 constant  ×  function of u alone [g(u), say]  ×  function of v alone [h(v), say] 
 

and so U, V are independent.  g(u) is proportional to uα–1(1 – u)β–1, the pdf of a beta 
distribution, and so U has a beta distribution.  h(v) is proportional to vα+β–1e–θv, the pdf of 
a gamma distribution, and so V has a gamma distribution.  The scale parameter of V is θ , 
as for X and Y. 
 
 

(ii) XU
X Y

=
+

is the required distribution, where X and Y are the common 

exponential random variables.  Taking α = β = 1, g(u) = u0(1 – u)0 = 1 and so U has the 
uniform distribution on (0, 1). 
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(i) ( ) ( )1
2/ 2 1/ 2

0 0

1 1( )
2 2

tx xtX tx
XM t E e e e dx x e d

xπ π
−− −∞ ∞ −= = =∫ ∫ x . 

 
t < ½ is used in what follows to ensure convergence of the integral. 
 
Write ( 1

2 t= − )u x , so that ( )1
2du t dx= − . 

 

Then 
1/ 2
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The integral here should be recognised as Γ(½) = √π ;  
alternatively, refer back to the original pdf  

 

        1
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=
−
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( ) ( ) ( ) ( ) ( )1/ 2 3/ 2 3/ 21( )= 1 2 , so ' 1 2 2 1 2
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( ) ( )' 0XE X M∴ = =  

 

( ) ( ) ( ) ( )5/ 2 5/ 23'' 1 2 2 3 1 2
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( ) ( ) ( ){ }22 2Var 3 1 2X E X E X∴ = − = − = . 
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(ii) ( ) ( ){ }
1 ... n

n
X X XM t M t+ + =  

 
        . ( ) / 21 2 nt −= −

 
Now using ( ) ( )bt

aY b YM t e M at+ = , 
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 
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To find the limiting form of ( )ZM t , we take logs: 
 

( ) 2log log 1
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2
t n→ → ∞

→ ∞

. 

 
So , which is the mgf of N(0, 1). ( ) 2/2 ast

ZM t e n→
 
Therefore in the limit Z becomes N(0, 1), i.e. the standard Normal distribution. 
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(i) In a U(–θ, θ) distribution, f (x) = 1
2θ

 and F(x) = 1
2 2
x
θ

+ , for –θ < x < θ. 

 
F(u(1), u(n)) = P(U(n) ≤ u(n)) – P(U(1) > u(1) and U(n) ≤ u(n)) 

      = P(all data ≤ u(n)) – P(all data between u(1) and u(n)) 

      = {F(u(n))}n – {F(u(n)) – F(u(1))}n 

      = ( ) ( ) (1)

2 2

n n
n nu u u
θ θ

−   
−   

   
,     for –θ < u(1) < u(n) < θ . 

 

f (u(1), u(n)) = 
( ) ( )

2

1 nu u
∂

∂ ∂
F(u(1), u(n)) 

 

     = 
( )

2
( ) (1)( 1)( )

2

n
n

n

n n u u

θ

−− −
. 

 
[An argument using the multinomial distribution with one observation at each of u(1) and 
u(n) and with n – 2 in between is also acceptable.] 
 
 
(ii) Transforming to R = U(n) – U(1) and T = U(1)  (so that U(n) = R + T), we have the 
Jacobian 
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(1) ( ) ,

, 0 1
so 1

1 1,
nu u
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∂

∂
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 Hence  f(r, t) =
( )

2( 1)
2

n

n
n n r

θ

−−
     (for    –θ < t < θ – r,   0 < r < 2θ). 
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(iii) 

( )
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2
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∫

∫ r

 

 
Hence 1

2 R  is a biased estimator of θ  (but asymptotically unbiased as ). n → ∞
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(i) (a) The inverse cumulative distribution function method can be used with 

tables of the standard Normal cdf Φ(x).  The values of z are such that 
Φ(z) = u, and for the four values of u the corresponding values of z are  
–1.07, –0.42, +0.46, +1.40. 

 
 (b) These can be transformed to N(–2, 0.81) by w = µ + σ z or w = –2 + 0.9z, 

to give –2.963, –2.378, –1.586, –0.740. 
 

(c) The chi-squared distribution with one degree of freedom is the square of 
N(0, 1), so take values of z2 from (i):   1.14, 0.18, 0.21, 1.96. 

 
 
(ii) The probabilities and cumulative probabilities for a Poisson distribution with 

mean 2 are: 
 

r 0 1 2 3 4 5 … 
P(r) 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361  
F(r) 0.1353 0.4060 0.6767 0.8571 0.9473 0.9834  

 
 

Taxis:   0.553 corresponds to r = 2 (it is between 0.4060 and 0.6767) etc, giving 
2, 3, 1, 5, 1. 

 
Similarly for customers:   3, 1, 1, 2, 2. 

 
Time Taxis Arrivals Customers Arrivals 
3.00 0 2 0 3 
3.01 0 3 1 1 
3.02 1 1 0 1 
3.03 1 5 0 2 
3.04 4 1 0 2 
3.05 3  0  
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(i) (a) 
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( )

1

1

2 2

2 2
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β α βα β

α β α αβ α αβ
α β

1
α

α
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−

−

−   
= =   −+   

−     
=      − − −+      

+ −   
=    − − −+   

 + − − +
=  + + + − − 

− 
=  − 

=

C C

CDC

P

 

 
 

(b) The n-step transition matrix is Pn, which can be written 

( )( )( ) ( )1 1 1− − −CDC CDC CDC CDC 1−  and every pair 1−C  is replaced by I  

to give CD . 

C
1n −C

 

nD  is simply 
( )

1 0 1 0
, i.e.

00 1 n nλα β

   
   − −    

 in the given notation. 

 
Since 0 < α < 1 and 0 < β < 1, we have –1 < λ < 1, i.e. λ< 1;  therefore λn → 0. 

 

Thus  which is 11 0
0 0

n − 
→  

 
P C C

 

     
1 1 0 1 01 1 1
1 0 0 1 1 1 0 1 1

α β α β α β α
β β αα β α β α β

−          
× = =          − −+ + +          





. 
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(ii) Let state 0 be no rain and state 1 be rain.  The transition matrix is 
 

0.8 0.2
0.9 0.1

 
=  

 
P . 

 
This is the matrix in (i) with α = 0.2 and β = 0.9. 
 
 
As there is no rain on the first visit, 1 0 n   P  gives the probabilities for the two states 
on the next visit in n days' time.  As n is large, Pn can be taken as approximately equal to 
the limiting value in (i)(b), i.e. here 
 

1
1.1

0.9 0.2
0.9 0.2

 
 
 

. 

 
This gives 
 

[ ] 0.9 0.21 0
1.1 1.1

n  =   
P , 

 
i.e. P(rain) 0.2 2

1.1 11= = . 
 
 
Replacing  with  for the first visit gives the same answer because of the 

form of .  In the long run there are about 9 days without rain for every 2 days with 
rain. 

1 0
n

 0 1
P
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