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Graduate Diploma, Statistical Theory & Methods, Paper II, 2004.  Question 1 
 
 
(i) Since the mean of the random variable is θλ, the method of moments estimator 

θλ  is found from Xθθλ = , giving /Xθλ θ= . 
 

( ) ( )E X E X θλ= = , so ( ) 1 .E θλ θλ λ
θ

= = , i.e. θλ  is unbiased for λ. 
 
 
(ii) [Note that "log" denotes logarithm to base e throughout the solutions to this paper, in 
accordance with the Society's usual notation.] 
 
We have 

( ) ( )log 1 log log logxf x x kθθ θ λ
λ

= − − − − . 
 

( ) ( )
2

2 2 3 2

2log and logd x d xf x f x
d d

θ θ
λ λ λ λ λ λ

∴ = − = − + . 

 

( )
2

2 3 2 2

2logdE f X
d

θλ θ θ
λ λ λ λ

 
∴ − = − = 

 
, so the Cramér-Rao lower bound is 

2

n
λ
θ

. 

 
Now, 
 

( ) ( )
2 2

2 2

1 1Var Var Var .X X
n nθ

θλ λλ
θ θ θ θ

 = = = = 
 

, 
 

and so the variance of θλ  attains the lower bound. 
 
 
(iii) We now have, instead, that λ is known and θ is not.  The likelihood function is 
 

( )
1

/

1

i

n
xi

i

xL e
k

θ
λ

θ
θ

θ
λ

−
−

=

=∏ , from which we have 

 

( ) ( )
1 1

1log 1 log log log
n n

i i
i i

L x n k n xθθ θ θ λ
λ= =

= − − − −∑ ∑ , 
 

in which the final term is a function of the data (recall that λ is known) and the 
remaining three terms form a function of θ and Σlog xi.  Therefore by the Neyman-
Fisher factorisation theorem, Σlog xi is a sufficient statistic for θ. 
 
 
(iv) We can argue directly that the method of moments estimator must be a 
function of X , i.e. of ΣXi.  But Σxi is not a sufficient statistic, so an estimator based 
on it will not be fully efficient. 
 

To find the estimator, we have ( )E X θλ= , so the estimator is /X λ . 
 



 

 

Graduate Diploma, Statistical Theory & Methods, Paper II, 2004.  Question 2 
 
 

 ( ) ( )
1

exp , , all 0
cc

c
cx xf x x c λ
λ λ

−    = − >  
   

 

 

(i) ( ) ( )log log 1 log log
cxf x c c x c λ

λ
 = + − − − 
 

,  giving 

( ) 1log
c

c
d cx cf x

dλ λ λ+= − . 

 

Thus, from ( )log 0dE f X
dλ
  =  

, we have 1
c

c

c cE X
λ λ+   =   so that c cE X λ  =  . 

 
 

(ii) From part (i), 1

log c
ic

d L c ncx
dλ λ λ+= Σ − .  Setting this equal to zero gives 

 

1

1ˆ
n

cc
i

i
x

n
λ

=
= ∑ ,  i.e. 

1/

1

1ˆ
cn

c
i

i
x

n
λ

=

 =  
 
∑ .  [It may easily be verified from the second 

derivative that this is indeed a maximum.] 
 
 

(iii) ( )2

2 2 2

1
log c

ic

c cd ncL x
dλ λ λ+

+
= − +∑ . 

 
( )2 2

2 2 2 2

1
log c

c

c cd nc ncE L n
d

λ
λ λ λ λ+

+ 
∴ − = − = 

 
. 

 

Hence the large sample variance of λ̂  is 
2

2nc
λ . 

 
 

(iv) An approximate 95% confidence interval for λ is 
ˆ1.96ˆ

c n
λλ ± , giving 

1.96 44
20
×±  , i.e. 4 ± 0.39. 

 

[Also acceptable is 2 44
20
×±  , i.e. 4 ± 0.4.] 



 

 

Graduate Diploma, Statistical Theory & Methods, Paper II, 2004.  Question 3 
 
 

(i) 
!

ix n

i

eL
x

θθ Σ −

=
Π

, giving ( ) ( )log log log !i iL x n xθ θ= Σ − − Π . 

 

log ixd L n
dθ θ

Σ∴ = − , so the maximum likelihood estimator of θ is 1ˆ
iX X

n
θ = =Σ . 

 

(Note that 
2

2 2

log ixd L
dθ θ

Σ= − , so this is indeed a maximum.) 

 
By the "invariance property" of maximum likelihood estimators, the ML estimator of 

e θλ −=  is ˆˆ Xe eθλ − −= = . 
 
 
(ii) For the Poisson distribution with mean θ, Var(X) = θ.  Hence ( )Var /X nθ= , 

i.e. ( )ˆVar /nθ θ= . 
 

The delta method gives that the variance of ( )ˆg θ  is approximated by ( )
2

ˆVardg
d

θ
θ

 
 
 

 

evaluated at the mean of the distribution which here is simply θ.  So we need to obtain 
2dg

n d
θ

θ
 
 
 

 with ( )g e θθ −= .  This immediately gives dg/dθ = e θ−− , so the approximate 

variance is ( )
22 ee

n n

θ
θθ θ −

−− = . 

 
 
(iii) The number of zero observations is binomially distributed with p = e θ λ− = , 
i.e. B(n, λ).  Thus λ , the proportion of zeros, has expected value λ, i.e. it is unbiased.  
Also we have 
 

( ) ( ) ( )11
Var

e e
n n

θ θλ λ
λ

− −−−
= = . 

 
 
(iv) Using the approximate variance from part (ii), the efficiency of λ  relative to 

λ̂  is given approximately by ( )
2

.
11

e n
n ee e

θ

θθ θ

θ θ−

− −
=

−−
.  Hence if θ is small, the 

efficiency is near (but less than) 1;  as θ increases, the efficiency decreases;  as θ 
becomes large, the efficiency tends to zero. 
 
[Candidates were expected to provide a rough sketch accordingly.] 
 



 

 

Graduate Diploma, Statistical Theory & Methods, Paper II, 2004.  Question 4 
 

H0: µ = 0.     H1: µ = 1.     The likelihood is ( ) ( )2

1

1 1exp
22

n n

i
i

L xµ µ
π =

  = − −  
   

∑ . 

 

(i) ( ) ( ) ( )221

0

1 1
2 2

1 1exp 1 exp exp
2 2i i i

L x x x n nx n
L

 = − − = − = − 
 

Σ Σ Σ . 
 

This is an increasing function of x , so the Neyman-Pearson test will reject H0 when 
x  > k for some suitable k. 
 
(ii) Type I error is ( )P X k µ> = 0 , required to be ≤ 0.05. 

 Type II error is ( )1P X k µ< = , required to be ≤ 0.05. 
 

If µ = 0, we have X  ~ N(0, 1/n);  the Type I error criterion gives ( )1 0.05k n−Φ ≤ , 

i.e. 1.6449k n ≥ . 
 

If µ = 1, we have X  ~ N(1, 1/n);  the Type II error criterion gives 1 0.05
1/
k

n
− Φ ≤ 

 
, 

i.e. ( )1 1.6449k n− ≤ − . 
 

Solving these two inequalities together gives k = ½ and ( )22 1
21.6449n ≥ ÷ , i.e. n ≥ 

10.82, so use n = 11. 
 
(iii) Let L0(m) and L1(m) denote the likelihoods after taking m observations, with 

likelihood ratio ( )
( )

0

1
m

L m
L m

λ = .  Here we have ( )1
2expm m mxλ = − . 

 

The sequential probability ratio test rule is to continue sampling if A < λm < B, accept 
H0 if λm ≥ B and reject H0 (i.e. accept H1) if λm ≤ A.  A and B are given 

(approximately) by 0.05 1
1 0.95 19

A α
β

= = =
−

,   1 0.95 19
0.05

B α
β
−= = = . 

 
The approximate expected sample size under H0 is given by 
 

( ) ( )
( )0

0

log 1 log

i

A B
E N H

E Z H
α α+ −

= ,  where 1
2i iz x= −  since 1

2log m im xλ = −Σ .  This 

gives ( )0
1
2iE Z H =  and so ( ) ( )( )0 0.05log 1/19 0.95log19 0.5 5.30E N H ≈ + ÷ = . 

 
Similarly, the approximate expected sample size under H1 is given by 
 

( ) ( )
( )1

1

1 log log

i

A B
E N H

E Z H
β β− +

= , and ( )1
1
2iE Z H = − , giving 

 

( ) ( )( ) ( )1 0.95log 1/19 0.05log19 0.5 5.30E N H ≈ + ÷ − = . 
 



 

 

Graduate Diploma, Statistical Theory & Methods, Paper II, 2004.  Question 5 
 
 
(i) F0(x) is specified and can therefore be evaluated at the n sample points x1, x2, 
…, xn.  It is compared with the empirical distribution function S(x) constructed by 
ranking the sample values (it is assumed that this has already been done for x1, x2, …, 
xn) and ascribing to S(x) the values 1/n at x1, 2/n at x2, …, (n – 1)/n at xn–1 and 1 at xn. 
 
The Kolmogorov-Smirnov (KS) test is based on the absolute values F(xi) – S(xi).  If 
these are all "sufficiently small", the null hypothesis (that F0(x) is the correct 
underlying cumulative distribution function) cannot be rejected.  The procedure uses 
the largest absolute value (commonly denoted by Dn) and compares it with a special 
table of critical values depending on sample size. 
 
 
(ii) KS can be applied to any fully specified F0.  It operates by comparing 
cumulative distribution functions, whereas the familiar chi-squared test compares 
histograms constructed from the data and the pdf.  Thus KS does not require the data 
to be grouped into intervals as does the chi-squared test.  Also, it typically needs 
smaller sample sizes.  However, the chi-squared test is much more straightforward to 
use. 
 
Dn is distribution-free so long as F is continuous.  Its exact distribution is known, 
unlike that of the chi-squared test statistic which is only approximate.  However, it 
requires F0 to be fully specified.  When F0 is not fully specified, KS is not so easily 
applied, whereas the chi-squared test is very easily adjusted by reducing the number 
of degrees of freedom.  KS is also not so easily applied to discrete distributions. 
 
 
(iii) The ranked data are 3, 15, 30, 45, 57, 80, 145, 170, 251, 280. 
 
F0(x) = 1 – e–x/100, for x = 3, 15, …, 280.  S(x) takes the values 0.1, 0.2, …, 1.0. 
 
x 3 15 30 45 57 80 145 170 251 280 
F0(x) 0.0296 0.1393 0.2592 0.3624 0.4345 0.5507 0.7654 0.8173 0.9187 0.9392 
S(x) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
D 0.070 0.061 0.041 0.038 0.066 0.049 0.065 0.017 0.019 0.061 

 
 
The maximum absolute difference is 0.066, which is not signficant (5% critical point 
is 0.409).  The null hypothesis is not rejected. 
 



 

 

Graduate Diploma, Statistical Theory & Methods, Paper II, 2004.  Question 6 
 
 
(i) For an estimator T and loss function l(t, θ ), the risk of T is R(θ ) = E[l(t, θ )]. 
 
T is inadmissible if there is an estimator U such that 
 
  RU (θ ) ≤ RT (θ )   for all θ 
 
 and RU (θ ) < RT (θ ) for at least one value of θ. 
 
 
(ii) For the given distribution, E[X] = θ and Var(X) = θ 2. 
 
Thus 
 

1ˆE n
n

θ θ θ  = =   (so θ̂  is unbiased), 

( )
2 2

21ˆVar n
n n

θθ θ = = 
 

. 

 
Therefore 
 

( ) ( )
2 2

2ˆ variance bias 0MSE
n n
θ θθ = + = + = . 

 
Similarly, 
 

( ) 1
1

E n
n

θ θ=
+

, so the bias of θ  is 
1 1

n
n n
θ θθ −− =
+ +

, 

( ) ( )

2 2
2

2
1Var

1 1
nn

n n
θθ θ = = +  +

. 

Therefore 
 

( ) ( )

22 2

2 1 11
nMSE

n nn
θ θ θθ − = + = + + +

. 

 
 
(iii) For squared error loss, R(θ ) = E[(T – θ )2] = MSE(T). 
 
Since ( ) ( )ˆR Rθ θθ θ<  for all θ, θ̂  is inadmissible. 
 
 
(iv) As n →∞ , ( )E θ θ→  and ( )Var 0θ → .  Hence θ  is a consistent estimator 

of θ. 
 



 

 

Graduate Diploma, Statistical Theory & Methods, Paper II, 2004.  Question 7 
 
 
(i) The likelihood is ( ) ( )1 ixnL θ θ θ Σ= −x .  Thus the posterior density is 
 
( ) ( ) ( ) ( ) ( ) ( )1 11 11 . 1 1i ib x b xa n a np p Lθ θ θ θ θ θ θ θ θ− Σ +Σ −− + −∝ ∝ − − = −x x  

 
which is beta with parameters a + n and b + Σxi.  Thus the beta distribution is a 
conjugate prior. 
 
 

(ii) Mean = 1
2

a
a b

=
+

;  this gives a = b. 

 

Variance = 
( ) ( ) ( )( )

2

2 2

1
1002 1 41

ab a
a aa b a b

= =
++ + +

;  thus 2a + 1 = 25, so a = 12 and 

thus also b = 12. 
 
 
(iii) The posterior distribution is beta with parameters 100 and 60. 
 

So the posterior mean is 100 5 0.625
100 60 8

= =
+

.  Also, the posterior variance is 

2

100 60 0.001456
161 160

× =
×

, so the posterior standard deviation is 0.038. 

 
 
(iv) Using a Normal approximation with the same mean and variance as the 
posterior beta distribution, an approximate 90% interval for θ is 
 

( )0.625 1.645 0.038 0.625 0.063± × = ± , 
 
i.e. (0.562, 0.688). 
 



 

 

Graduate Diploma, Statistical Theory & Methods, Paper II, 2004.  Question 8 
 
 
(i) Let f (xθ ) denote the pdf of the given distribution.  Then the likelihood 

function for a sample x1, x2, …, xn is ( ) ( )
1

n

i
i

L f xθ θ
=

=∏x , viewed as a function of θ. 

 
The maximum likelihood estimator ( )θ̂ x  is the value of θ at which ( )L θ x  attains its 
maximum.  This can be obtained (under suitable regularity conditions) as the solution 
of dL/dθ = 0 or equivalently of d logL/dθ = 0. 
 
 
(a) The likelihood ratio test statistic for testing H0: θ = θ 0 against H1: θ ≠ θ 0 is 
 

( ) ( )
( )

0

ˆ
L

L

θ
λ

θ
=

x
x

x
. 

 
H0 is rejected for "small" values of λ, since these indicate that the likelihood under H0 
is "too small" compared with its maximum possible value.  Thus H0 is rejected for 
λ ≤ c say, where c is a constant to be determined. 
 
We illustrate for the case of the Normal distribution with unknown mean θ and known 
variance σ 2.  Here the maximum likelihood estimator of θ is simply x  and we have 
 

( )
( ) ( ){ }
( ) ( ){ }

2 2
0

2 2

2 exp / 2

2 exp / 2

n

i

n

i

x

x x

σ π θ σ
λ

σ π σ

−

−

− −
=

− −

∑
∑

x  

 

          ( ) ( )2 2
02

1exp
2 i ix x xθ
σ

  = − − − −   
∑ ∑ . 

 
Using ( ) ( ) ( )2 2 2

0 0i ix x x n xθ θ− = − + −∑ ∑ , this gives 
 

( ) ( )2
02exp

2
n xλ θ
σ

 = − − 
 

x  ,       or       ( ) ( )2
02log

2
n xλ θ
σ

= − −x . 

 
The rejection region is given by x such that λ(x) ≤ c, so H0 is rejected when 
 

 
2

0
2 logx c

n
σθ− ≥ − . 

 

Now, c must lie between 0 and 1, so the test criterion is to reject H0 when 0x θ−  is 
greater than some constant  –  i.e. we get the familiar two-tailed test comparing the 
sample mean x  with the hypothesised value 0θ . 
 
Solution continued on next page 
 



 

 

(b) Under regularity conditions, 
 

log 0d LE
dθ

  =  
 

 
and 
 

2 2

2

log logd L d LE E
d dθ θ

     = −         
. 

 
This leads to the Cramér-Rao lower bound for the variance of an unbiased estimator 
as 
 

2 2

2

1 1
loglog d Ld L EE dd θθ

= −
    
         

. 

 
As sample size becomes very large, this bound applies to the variance of a maximum 
likelihood estimator. 
 
Further, maximum likelihood estimators are asymptotically Normally distributed. 
 
Hence a large-sample confidence interval for θ  can be obtained as 
 

 
2

2

1ˆ
log

z
d LE

d

θ

θ

± −
 
 
 

 

 
where z is the required percentage point from the N(0, 1) distribution (e.g. 1.96 for a 
95% confidence interval). 
 
 
(ii) If prior knowledge is vague, with a locally relatively flat prior distribution 
being used, the posterior distribution will be approximately proportional to the 
likelihood in the vicinity of the maximum likelihood estimator.  Thus the method 
outlined above will give an approximation to a Bayesian interval for the parameter. 
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