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Graduate Diploma, Statistical Theory & Methods, Paper I, 2004.  Question 1 
 
 
X and Y are independent, each with probability function given by P(W = w) = (1 – θ)w–1θ, 
for w = 1, 2, … and where 0 < θ < 1. 
 
 
(i) Let U = X + Y.  U may take the values 2, 3, … .  By the independence of X and Y,  
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for u = 2, 3, … [this is a negative binomial distribution]. 
 
 
(ii) If U (= X +Y) = u, X must take values in the range 1, 2, …, u – 1.  Then 
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  (for x = 1, 2, …, u – 1). 

 
This is a discrete uniform distribution on the integers 1, 2, …, u – 1. 
 
 
(iii) Suppose Andy takes X attempts and Bob takes Y attempts.  Then X and Y are 
independent geometric random variables with θ = 0.4. 
 
 Thus from part (i),  P(X + Y = 6)  =  (6 – 1)(0.4)2(0.6)4  =  0.1037. 
 
 From part (ii),  P(X < Y  X + Y = 6)  =  P(X = 1 or 2  X + Y = 6) 
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(i) (a) We have P(U = u) = 1/m, for u = 1, 2, …, m. 
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     Also, 
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     and therefore  Var(U) = E[U 2] – {E[U]}2 
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 (b) V = U + k,  so [ ] 1
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(ii) Given that Y = y, the first y – 1 rolls must have been 6s and the final roll not a 6. 
 
Thus X is a discrete uniform random variable with, using the notation of part (i)(b), 

k = 6(y – 1) and m = 5.  Hence [ ] ( )5 1 6 1
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These are the values conditional on Y = y. 
 

Now, Y is a geometric random variable with [ ] 1 6
5 / 6 5

E Y = =  and ( )
( )

5
6
25

6

1 6Var
25

Y −= =  . 

 

[ ] ( ) [ ] [ ] 36 216 3 6 3 3
5 5

E X E E X Y E Y E Y ∴ = = − = − = − =   . 

 
We also need 
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from which (using the result quoted in the question) 
 

( ) 216 266Var 2
25 25

X = + = . 
 



 

 

Graduate Diploma, Statistical Theory & Methods, Paper I, 2004.  Question 3 
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This is gamma with α = 2 and θ = 2. 
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This is gamma with α = 3 and θ = 2. 
 
Therefore from part (i), E[X] =1 and Var(X) = 1/2, and E[Y] = 3/2 and Var(Y) = 3/4. 
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X and Y are uniform(0, 1).     U = X – Y,  V = X + Y.     So X = ½(U + V) and Y = ½(V – U). 
 
(i) The limits of U are (–1, 1) and of V are (0, 2).  The diagram shows the square 
region where f (u, v) ≠ 0. 
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Therefore, for u, v in the region shown, and using the inde
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(f (u) and f (v) are zero elsewhere.)  These distributions a
one unit in the x-direction. 
 
 
(iii) We now have W = a + tX and Z = b + tY  (t > 0). 
= (a + b) + tV  where V is as in parts (i) and (ii).  So, using
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(i) The method is to complete the square in the exponent in the integral and then 
recognise that this re-creates the pdf of a Normal distribution so that the value of the 
integral is simply 1. 
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Taking a = 1/σ and b = µ/σ we have Z, and so 
 

( ) 2
2 2

/ / 2
2exp

2
t t

Z
t tM t e eµ σ µ σ

σ σ
−  

= + = 
 

 . 

 
Putting µ = 0 and σ  = 1 in the result of part (i), we see that this is the moment generating 
function of the standard Normal distribution.  Therefore (assuming without proof the 
uniqueness property between distributions and their moment generating functions) Z 
follows the standard Normal distribution. 
 
 
(iii) We expand MZ(t) as a power series in t and use the result that the rth moment of Z 
about the origin, E[Z r

 ], is the coefficient of t r/r! in this expansion.  [Alternatively, use 
the result that it is given by the rth derivative evaluated at t = 0.] 
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We need E[Z 2] and E[Z 4], which we see are 1 and 3 respectively. 
 
So Var(Z 2) = E[Z 4] – {E[Z 2]}2 = 3 – 1 = 2. 
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(i) ( ) ( ) ( ) ( ) ( ) ( )boy boy girl girlF x P X x P X x P P X x P= ≤ = ≤ + ≤  
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(iii) As the sample is large, we may use the central limit theorem to say that the 
distribution of rX  is approximately Normal, whatever the distributions f1 and f2. 
 
The mean of rX  is equal to the mean of X, i.e. ( )1

1 22 µ µ+ . 
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(iv) Let the (independent) sample means for boys and girls be 1X  and 2X .  Their 
means are 1µ  and 2µ , and their variances are each σ 2/n.  So ( )1
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the latter has smaller variance;  it is more precise. 
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(i) (a) The distribution of X is 
 

x 0 1 2 3 
P(x) 64/125 48/125 12/125 1/125 

cdf F(x) 0.512 0.896 0.992 1.000 
 

0.3612 < 0.512 and so corresponds to x = 0. 
 

0.6789 is between 0.512 and 0.896 and so corresponds to x = 1. 
 

0.3552 < 0.512 and so corresponds to x = 0. 
 

0.2898 < 0.512 and so corresponds to x = 0. 
 

So the sample is  0, 1, 0, 0. 
 
 

(b)       ( ) 4 4 43 / 2 / 2 / 2
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xx t t xF x t e dt e e− − − = = − = − ∫  .  Thus the inverse cdf method 

gives 
4 / 21 xu e−= − , where u is the random number, so ( ) 1/ 4

2 log 1x u= − −   . 
 

u 
 

1 – u –2log(1 – u) [–2log(1 – u)]1/4  
0.3612 0.6388 0.8963 0.9730  
0.6789 0.3211 2.2720 1.2277  
0.3552 0.6448 0.8776 0.9679  
0.2898 0.7102 0.6844 0.9096  

   ↑  
   These are the required random numbers 

 
 
(ii) Inter-arrival times, X, are exponential with parameter ½.  Given u (as above), the 
inverse cdf method leads to u = 1 – e–x/2, i.e. x = –2log(1 – u) [as is tabulated in column 3 
above]. 
 
First arrival time is at 0.8963.  Service starts immediately and lasts (uniform distribution 
on (1.5, 2.5)) 1.5 + 0.6789 = 2.1789, and thus ends at 0.8963 + 2.1789 = 3.0752. 
 
Second arrival time is at 0.8963 + 0.8776 = 1.7739.  Service cannot start until 3.0752 and 
then lasts 1.5 + 0.2898 = 1.7898, and thus ends at 3.0752 + 1.7898 = 4.8650. 
 
Expressing the simulated results to the nearest 0.1 minute after 9.00 a.m., the first 
customer arrives at 0.9 and leaves at 3.1, the second arrives at 1.8 and leaves at 4.9. 
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(i) Consider the number of balls in urn A, an integer from 0 to M.  Define the 
transition probability ( )balls in urn A at step balls in urn A at step 1i jp P j n i n= − . 
 
Then we have 
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To confirm that the general equation is satisfied, consider 
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Multiplying by (1/2)M, we see that the general equation ( j = 1, 2, …, M – 1) is satisfied. 
 
(iii) Let X be the number of balls in urn A.  The given probabilities form a binomial 
distribution with parameters (60, ½).  So E(X) = 60 × ½ = 30 and Var(X) = 60 × ½ × ½ 
= 15.  P(X = 34) can be approximated by P(33.5 < N(30, 15) < 34.5).  Standardising to 
N(0, 1) gives P(0.9037 < N(0, 1) < 1.1619) = 0.8774 – 0.8169 = 0.0605. 
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