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which is Binomial(n, θ1). 
 
It follows by symmetry that Y is Binomial(n, θ2). 
 
 
(ii) For x = 0, 1, …, n – y, 
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so that, conditional on Y = y, X is Binomial 1

2
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(iii) P(double six) = (1/6)2 = 1/36.     P(no six) = (5/6)2 = 25/36. 
 
The joint distribution of X and Y as defined is given by the multinomial with 
θ1 = 1/36, θ2 = 25/36. 
 
Therefore by (i), E(X) = 10/36 = 5/18, since X is Binomial(10, 1/36). 
 
By (ii), in the case Y = 0, E(XY = 0) = 10/11, since X will be Binomial(10, 1/11).  
(There are 11 ways out of 36 of having at least one six.) 
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(i) (a) The law of total probability is ( ) ( ) ( )
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Bayes' Theorem states that ( ) ( ) ( )
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(b) Since {Fj} partitions S, Ei can be written as the disjoint union of events 
{Ei and Fj}.  S is the disjoint union of {Ei}, so S is also the disjoint 
union of events {Ei and Fj}.  Hence {Ei and Fj} partitions S. 
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(ii) (a) P(no son haemophiliac) 
 

= P(no son haemophiliacwoman carrier).P(woman carrier) 
 

   + P(no son haemophiliacwoman not carrier).P(woman not carrier) 
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P(woman carrierno son haemophiliac) 1/16 1
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P(daughter carrier) 

= P(daughter carrierwoman carrier).P(woman carrier) 1 1 1
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(b) P(at least one girl carrier) 
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(i) The space where X and Y exist jointly is not a rectangular region.  It is possible 
to find points (x, y), e.g. (½, ¾), where both f(x) and f(y) are >0 but f(x, y) = 0;  thus 
f(x, y) ≠ f(x).f(y). 
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Hence 
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so that the cumulative distribution function is ( ) ( )3 for 0 1WF w w w= ≤ ≤  and the 

probability density function is ( ) ( )23 for 0 1Wf w w w= ≤ ≤ . 
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(i) As X and Y are independent, 
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So the joint pdf of R,φ  is  ( )
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(ii) The pdf of R is  ( )
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[This can also be seen because R,φ  exist in a "rectangular" space, and the joint pdf 

can be written as ( )2 2/ 2
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 which factorises, so R,φ  are independent.] 

 
 
(iii) The cumulative distribution function of R is 
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( ) 2 / 21 kF k eσ −∴ = − , which is to be 0.5.  This gives 0.5 = 
2 / 2ke− , or 
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Taking logarithms (base e), 
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Hence ( ) ( )2exp / 2ZM t t→   as  µ → ∞ , and this is the moment generating function 
of N(0, 1).  Hence the limiting distribution of Z is N(0, 1). 
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Poisson m.g.f. but with parameter iµ∑ , so the distribution of W is Poisson with 

parameter iµ∑ . 
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(i) For the Weibull distribution, ( ) 1
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it decreases as w increases if θ < 1. 
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If Xi is Weibull ( ),iα θ , this gives ( ) ( ) ( ) 1 1
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(iii) G(y) = P(both components fail in time y) = F1(y)F2(y) by independence.  For 
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(i) (a) 
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and P(2) = 10/105.  Hence the probability function (f(x)) and c.d.f. (F(x)) are 
 

x 0 1 2 
f(x) 0.4286 0.4762 0.0952 
F(x) 0.4286 0.9048 1.0000 

 
The inverse c.d.f. method produces x = 0 if the random number is ≤ 0.4286, 
x = 1 if the random number is between 0.4287 and 0.9048, and x = 2 for 
0.9049 upwards.  Hence we obtain 1, 0, 2, 1. 

 
 

(b) F(x) = x3  (for 0 ≤ x ≤ 1).  The inverse c.d.f. method sets u = F(x) = x3, 
so x = u1/3.  So we obtain 0.8142, 0.6960, 0.9962, 0.7894. 

 
 
 
(ii) Generating a N(9, (1/2)2) random variable requires a N(0, 1) z, found as 

( )1 u−Φ , followed by a transformation x = 9 + 1
2 z. 

 
For u = 0.5398, we get z = 0.10 and hence x = 9.05. 
For u = 0.3372, we get z = –0.42 and hence x = 8.79. 
For u = 0.9887, we get z = 2.28 and hence x = 10.14. 
For u = 0.4920, we get z = –0.02 and hence x = 8.99. 

 
Beginning at 11.00 a.m. and working in decimals of a minute, the times taken to reach 
B, C, D, E will be 9.05, 8.79, 10.14, 8.99 minutes.  Notice that this means that the bus 
will need to "wait time" at B and C.  The bus leaves B at 11.10 and C at 11.20.  It then 
leaves D at 30.14 minutes past 11.00, to arrive at E at 39.13 minutes past 11.00.  It 
will have waited 0.95 minutes at B, 1.21 minutes at C, and 0 minutes at D. 
 
A sample of arrival times at E could be generated in this way using a larger 
simulation, and the sample mean used to estimate the expected arrival time.  The 
number of times in the sample, n say, that E is not reached until after 11.40 a.m. could 

be used in estimating the probability of a late arrival:  ˆ
number of simulations

np = . 
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(i) The states of the Markov Chain are 0 (not obese) and 1 (obese).  If Xi is the 
state reached at age i (i = 0, 1, 2, … years) and ( )1rs i ip P X s X r+= = =  for r = 0, 1 

and s= 0, 1, the transition matrix is [ ] 1
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(ii) The two-step transition matrix is 
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All children are non-obese (state 0) at 0 years.  So the probability that a child is obese 
(state 1) at 2 years is given by the "top right" element of P2, i.e. it is ( )1φ φ θ− + . 
 
 
(iii) The proportion of children who have never been obese at any stage up to and 
including 3 years is ( ) ( )3 3

00 1p φ= − . 
 
 
(iv) ( ) ( )1 1i i i ip p p pθ φ φ θ φ+ = + − = + − . 

Inserting i = 0 in the expression given in the question gives ( )
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 which equals 

0 as required (all children are non-obese at age 0).  Now supposing the result holds for 
pi (i ≥ 0), we have 
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Hence by induction the result is true for all i ≥ 0. 
 
 

(v) As i increases, ( )
1 0

1ip φ
θ φ
−→

− −
 since θ – φ < 1, i.e. ( )1ip φ

θ φ
→

− −
. 

For θ = 0.8 and φ = 0.1, 0.1 1
1 0.7 3ip → =

−
, so we expect approximately one-third of 

this adult population to be obese. 
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