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Graduate Diploma, Applied Statistics, Paper I, 2003.  Question 1 
 
 
(i) Series 1 : There is no pattern.  All values in ACF and PACF lie in the range 

±2/√N = ±2/√50 = ±0.28.  This suggests a random series of data, 
with "white noise" only.  In the notation of part (ii), 

 

    Xt = µ + Zt . 
 
 Series 2 :  The ACF gradually dies off (though increasing again from lag 

10).  The PACF has a spike at lag 1 and no other notable 
features, so an AR(1) process is a suitable model: 

 

    Xt = αXt–1 + Zt     (a Markov process), 
 

where α (of absolute value less than 1) is a constant. 
 
 Series 3 : The ACF begins with high positive values and these decrease 

only slowly.  The PACF has a high value at lag 1 only.  This 
process seems to consist of trend + white noise. 

 
 
(ii) ( ) ( ) ( ) ( ) ( )1 2 1 20.8 0.4 0.8 0.4t t t t t t tE X E Z Z Z E Z E Z E Z− − − −= + − = + −  = 0, since 
E(Zt) = 0 for all t. 
 
Since the Zt are independent ("white noise"), 
 

( ) ( ) ( ) ( ) ( ) ( )2 2
1 2Var Var 0.8 Var 0.4 Vart t t tX Z Z Z− −= + + −  

( ) 2 21 0.64 0.16 1.8Z Zσ σ= + + =  ; 
 

( ) ( )1 1 2 1 2 3Cov , Cov 0.8 0.4 , 0.8 0.4t t t t t t t tX X Z Z Z Z Z Z− − − − − −= + − + −  

( ) ( )1 20.8Var 0.32Vart tZ Z− −= −     [by independence] 

( )20.48 1Z Xσ γ= =  ; 
 

( ) ( )2 1 2 2 3 4Cov , Cov 0.8 0.4 , 0.8 0.4t t t t t t t tX X Z Z Z Z Z Z− − − − − −= + − + −  

( )20.4Var tZ −= −     [by independence] 

( )20.4 2Z Xσ γ= − =  ; 
 
For k ≥ 3, Cov(Xt, Xt–k) = 0. 
 
So 
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Graduate Diploma, Applied Statistics, Paper I, 2003.  Question 2 
 
 
(a) Although the groups were selected at random, the diagram suggests that more 
of the "standard" group had longer times in the test before training;  this may be 
important when carrying out the analysis, which needs to be able to correct for any 
possible practical bias. 
 
The first t test looks only at the final times, and suggests that there is a very small 
difference between them, certainly not significant, but it takes no account of possible 
effects of the initial selection and so is not relevant. 
 
Actual times have dropped substantially in each group, presumably through the effect 
of training (by either method) and through practice.  The "new" group would have had 
less scope for change if their original times were indeed on the whole lower.  The 
second t test does not take account of initial ability.  It shows an estimated effect 
favouring the "standard" group, but this is likely to be an overestimate. 
 
The analysis of covariance does take account of the information given by the original 
times.  It shows a statistically significant advantage to the "standard" group, of 1.24 
seconds on average, after correcting for initial times.  This is statistically significant 
only at the 5% level (of the "usual" significance levels) but is probably the best 
indicator of the practical difference between the methods. 
 
 
(b) Heights and weights of small children are very likely to be correlated, and 
therefore when one of them is used as the independent variable in a linear model the 
other will not add much if any further information.  The third model is using both 
height and weight to predict catheter length.  The first two models use only one of 
them. 
 
All three models fit about equally well, as measured by R2, the proportion of 
variability (among the 12 length measurements) that is explained.  S is also about the 
same for each.  Looking at the accuracy of the estimates of the coefficients in the 
regressions of l on h and w, we see that in the first two models the coefficients of h 
and w respectively have quite small standard errors, with the standard error of 
"constant" smaller in the second model (l on w).  The third model, l = a + b1h + b2w, 
by contrast has relatively large standard errors for a, b1 and b2.  Also the values of b1 
and b2 are less easy to interpret;  for example, b1 is the average increase in l for unit 
increase in h when w is kept constant.  The third model does not seem worth using, 
not giving any better predictions of l than the others. 
 
The model l = a + bw might be slightly better than l = a' + b'h because the coefficients 
are better estimated (smaller standard errors).  In any case, w might be easier to 
measure accurately for small children than h is.  If so, this model is also preferred on 
practical grounds – and these should certainly be considered as well as statistical 
information. 



 

 

Graduate Diploma, Applied Statistics, Paper I, 2003.  Question 3 
 
 

(i) The alternative to MANOVA would be separate analyses of each response, X1, 
X2 and X3.  But there may be effects or interactions that are significant when X1, X2, X3 
are considered together that would not be when looked at separately.  Unnecessary 
multiple testing is also avoided. 
 

It must be assumed that (X1, X2, X3) have a multivariate Normal distribution, with 
equal variance-covariance structure in each group of data.  Normality of responses 
within each Xi is necessary but not sufficient for this, and it is very difficult to check 
multivariate Normality, especially in small groups as in this example.  The covariance 
matrices for each group could be compared, and any background or previous 
knowledge about the responses would be useful. 
 
 

(ii) Usually MANOVA F tests are only approximate, and the various criteria have 
different characteristics in respect of robustness to departures from assumptions and 
of power.  Although Wilks' Λ is often preferred, agreement among several criteria 
gives greater confidence in the answer. 
 

(iii) Λ  =  
SSCP matrix for Error (Residual)

SSCP matrix for Error  +  SSCP matrix for Extrusion
 

 

1.764 0.020 3.070 1.764 1.740 ... ...
0.020 2.628 0.552 0.020 1.504 ... ...
3.070 0.552 64.924 3.070 0.855 ... ...

− +
= − −

− − − +
 

 
 

(iv) Using the note on the F distribution associated with Λ, we have p = 3 and 
r = 16 (19 d.f. from 20 observations, less 3 for extr, addit and extr*addit), so F3,14 is 
to be used.  (5% point is 3.34, 1% point is 5.56.) 
 
H0 :  interaction is zero H1 :  interaction is non-zero 
 

value of test statistic is 1.339, not significant, H0 not rejected. 
 
H0 :  extr effect zero  H1 :  extr effect not zero 
 

value of test statistic is 7.554, significant at 1%, H0 rejected. 
 
H0 :  addit effect zero  H1 :  addit effect not zero 
 

value of test statistic is 4.256, significant at 5%, H0 rejected. 
 
Hence the change in rate of extrusion and the amount of additive both affect the 
responses, but they do so independently without interaction. 
 
 

(v) The univariate analyses could be carried out, and their results studied.  Perhaps 
simultaneous confidence intervals could be calculated, or canonical variate analysis 
attempted.  The absence of interaction makes it possible to study main effects in 
useful, standard ways. 



 

 

Graduate Diploma, Applied Statistics, Paper I, 2003.  Question 4 
 
 
(i) The original variables, the answers to the questions, are likely to be highly 
correlated.  Principal component analysis (PCA) gives linear combinations of the 
variables that are uncorrelated.  The first PC accounts for the largest amount of 
variation in the data, the second for the next largest, and so on.  If the questions form 
themselves into relatively distinct clusters then PCs are useful to define subsets, and 
possibly to suggest ways of combining scores. 
 
PCs are only strictly valid for numeric data, but the data here are nearer to being 
categorical – at best ordinal.  However, PCA is often used for data such as these. 
 
 
(ii) A cluster analysis could be useful, using correlations (or absolute values of 
them);  perhaps indications of the grouping of questions would be given. 
 
 
(iii) PCA only works on complete records.  If a respondent's answer to one 
question is missing, that whole set of responses will be omitted.  Because PCA is 
based on analysis of variability in data, missing values cannot easily be imputed.  The 
choice in this case is between analysing a large number of responses on a small 
number of questions and a small number of responses on a large number of questions.  
The strategy proposed seems sensible. 
 
 
(iv) The first three eigenvalues add to 5.14, i.e. 5.14/6 or 85.7% of the total 
variation, and should be enough. 
 
The first PC (54% of total variation) is an overall score of concern about cost – note 
that the "direction" of questions 2, 3, 4 is opposite to that of 1, 5, 6.  The second PC 
(23% of total variation) measures the tendency of respondents to answer all questions 
in the same way, i.e. with similar scores.  The third PC (9% of total variation and so 
relatively much less important) is dominated by question 4, perhaps contrasting its 
answers with those for question 2, perhaps also taking question 5 into account.  The 
first two PCs therefore give most of the useful, easily understood, information. 
 
 
(v) The two unsatisfactory features of the data are the large amount of missing 
information, leading to 9 of the 15 questions being discarded, and the suggestion from 
the second PC that the respondents do not complete the form validly.  Hence these 
results are not reliable.  A fresh start is needed, with reworded questions and boxes to 
tick as in a survey. 



 

 

Graduate Diploma, Applied Statistics, Paper I, 2003.  Question 5 
 
 
(i)(a) The least squares estimators of the coefficients of a linear model have minimum 

variance among all linear unbiased estimators.  (This assumes that the residual error 
terms are uncorrelated random variables with common variance.) 

 
    (b) Weighted least squares should be used when the errors are uncorrelated but have 

different variances, e.g. if the variance is some function of the mean. 
 
 
(ii)(a) 

30

40

50

60

70

80

90

50 55 60 65 70 75 80 85

Mean score on aptitude test

M
ea

n 
sc

or
e 

on
 m

at
he

m
at

ic
s 

te
st

 
Note.  False "origin" is placed at (50, 30). 

 

It might be useful to add (perhaps in brackets alongside each point) the number of pupils entered by the 
school. 

 
From the scatter plot, note that the two schools with the smallest number of pupils 
(these are the schools with aptitude test values near 80) have scores much higher than 
the others.  Otherwise the scatter seems fairly random.  However, the two highest 
points will be very influential in fitting a regression.  (A cluster analysis here might 
perhaps suggest three clusters – low maths, middle maths and high maths.) 

 
     (b) Simple linear regression gives a poor fit (R2 = 38%).  The value of "constant" is very 

poorly determined, though p = 0.019 for the coefficient of "aptitude" seems to suggest 
some linear relationship.  (Fuller output, with information on influence and leverage, 
would be useful.) 

 

However, the weighted regression, using numbers of pupils as weights, is even less 
satisfactory, giving an even lower R2 and no evidence of a linear relationship (p = 
0.193). 

 

The mean maths score has variance σi
2/ni where σi

2 is the within-school variance.  
The weighting assumes that all the σi

2 are similar, because then ni is a suitable weight.  
But the σi

2 are not likely to be (approximately) equal, and until we have all the 
individual marks we cannot obtain the alternative weighting factors ni /σi

2.  (For 
example, the schools with small ni might have selected pupils, leading to smaller σi

2 
than the others.) 

 

Neither regression is adequate, although the unweighted one might be a fair reflection 
of what is seen from the graph.  Without more "diagnostic" information, we cannot go 
any further. 



 

 

Graduate Diploma, Applied Statistics, Paper I, 2003.  Question 6 
 
 
(i) There will be a response (dependent) variable Y and a set x of possible explanatory 
(independent) variables, some or all of which can help to explain Y.  The resulting model 
(apart form the "error" term) will be Y = β0 + β1x1 + β2x2 + … + βpxp if p of the possible 
members of x are used. 
 

Begin with fitting Y = β0.  Then fit in turn Y = β0 + βi xi for each i, where xi is one of the set x.  
If none of these shows a βi which is significantly different from 0, there is no model better 
than "Y = mean + random error".  Otherwise, choose that xi which reduces the variation as 
much as possible (gives the smallest error (residual) sum of squares, or equivalently gives the 
greatest R2).  Call this x1. 
 

Next examine every possible two-variable regression including x1, i.e. Y = β0 + β1x1 + βsxs 
where xs is any member of x other than x1.  On the basis of the extra sum of squares accounted 
for by xs, choose the best xs to include in the model;  or, if no xs gives a significant reduction 
in the residual sum of squares, stop at the one-variable model. 
 

Continue in this way fitting extra terms as long as an x-variable can be found that gives a 
significant reduction in the residual sum of squares compared with the existing model. 
 

A good model selection procedure should provide as good an explanation of Y as possible 
using as few x-variables as possible.  This model will be easiest to apply and interpret.  The 
drawback of the forward selection procedure is that once a particular x-variable is in the 
model it cannot be removed;  an optimal model may then not be reached, because there could 
be a pair (or perhaps a larger set) of x-variables which together would be better even though 
neither gets into the model by itself.  Thus a variable already in the model may be retained to 
the exclusion of other variables that would have been more useful. 
 

[Putting this another way, suppose x1 is the first variable to enter the model, so that x1 gives 
the best one-variable model.  Forward selection will now never select models that do not 
include x1.  However, there may be a pair (or a larger set) of other variables that would have 
given a better model than either x1 alone or any other model that includes x1.] 
 
 
(ii)(a) Clearly X2 enters first, because it makes the largest reduction in the error sum of 
squares.  Once it is there, X3 is better than X1 to add to it in the model. 
 

Step 1 (entering X2) leaves an error SS of 117.17 with 22 d.f., thus the error MS is 5.326.  So 
the 1 d.f. reduction here is 170.85 – 117.17 = 53.68.  Thus we have an "extra sum of squares" 
test statistic of 53.68/5.326 = 10.08 which on comparing with F1,22 is significant at 1%.  So X2 
is retained in the model. 
 

Now adding X3 gives a further reduction of 117.17 – 90.007 = 27.163, and the error MS is 
90.007/21 = 4.286.  The F1,21 test statistic is 27.163/4.286 = 6.34 which is significant at 5%.  
So X3 is also retained in the model. 
 

Adding X1 to this two-variable model would reduce the error SS by only 90.007 – 88.453 = 
1.554.  This is less than the 20 d.f. error MS of 88.453/20 = 4.423.  So we do not add X1;  we 
stop at X2 and X3. 
 

Thus the model is Y = β0 + β2x2 + β3x3. 
 

The null hypothesis at each stage is that the sum of squares removed is not greater than that 
which remains as error mean square.  The (one-sided) alternative hypothesis is that it is 
greater. 
 
 
See next page for solution to (ii)(b) 



 

 

(ii)(b) The calculations of the Cp statistic for each model are as follows.  The quantity 
4.4227 is the error mean square from the full model. 
 
 

Model s n – 2s SSE /4.4227 Cp(s)  
(1) 1 22 38.6302 16.63  
X1 2 20 37.5267 17.53  
X2 2 20 26.4929   6.49  
X3 2 20 27.6822   7.68  

X1, X2 3 18 26.2962   8.30  
X1, X3 3 18 27.5284   9.53  
X2, X3 3 18 20.3511   2.35 ← forward selection model 

X1, X2, X3 4 16 20   4.00  
 
 
A good model has Cp(s) ≈ s (which has of course to be true for the full model from 
which the 4.4227 was calculated).  Clearly the forward selection model is best on this 
criterion, and the full model contributes very little to the explanation of Y that is not 
already contained in (X2, X3). 
 
 



 

 

Graduate Diploma, Applied Statistics, Paper I, 2003.  Question 7 
 
 
(i) Linear models assume that the residual (error) term included in a model is a 
random variable having constant variance for all values of the response variable Y.  
Sometimes a response Y is known not to have constant variance, and sometimes there 
is a relation between expected value and variance which is known or which can be 
deduced from a plot of the residuals.  As shown in part (ii), a function f (y) can often 
be found from this relation such that Var(f (y)) is constant.  Analysis is then carried 
out in terms of f (y), not y;  f is a transformation to stabilise variance. 
 
For example, if variability is proportional to the size of response, a log transformation 
will often stabilise the variance, i.e. Var(log Y) will be approximately constant. 
 
 
(ii) A Taylor series expansion about µ is 

( ) ( ) ( ) ( ) ( ) ( )21' '' ...
2!

h y h y h y hµ µ µ µ µ= + − + − +  , 

so 

( )( ) ( ) ( ) ( ) ( ) ( )21' '' ...
2

E h Y h h E Y h E Yµ µ µ µ µ = + − + − +   

( ) ( )21 ''
2 Yh hµ σ µ= +    to second order. 

 
Similarly to second order, 
 

( )( ) ( ) ( )( ) { } ( ) ( ){ }2 22 2 2Var ' 'Yh Y E h Y E h Y h E Y hµ µ σ µ   = − = − =      
 . 

 
If now ( )Y fσ µ= , we have ( )( ) ( ) ( ){ }2

Var 'h Y f hµ µ=  which is constant if 

( ) ( )
constant

'
f y

h y
=   or  ( )

( ) 1dh y
dy f y

∝  . 

 
 
(iii) Noting that all transformations include a multiplicative constant:- 
 

If σ µ∝ , we have f (y) = y and the transformation is logdy y
y

=∫ . 

If 2σ µ∝ , we have f (y) = y2 and the transformation is 2

1dy
y y

= −∫ , and use 1/y 

which is the modulus. 
 

If 2σ µ∝ , we have f (y) = √y and the transformation is 2dy y
y

=∫ , so use √y. 

 
 
See next page for solution to (iv) and (v) 
 



 

 

(iv) Descriptive statistics are 
 

 10mg 20mg 30mg 40mg 
x  35.13 78.50 84.63 127.88 

 sx 20.52 37.69 29.66   82.09 
 
The standard deviation does appear to be related to the mean. 
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Graduate Diploma, Applied Statistics, Paper I, 2003.  Question 8 
 
 
(i) The "correction factor" is (grand total)2/N = (504)2/54 = 4704. 
 
Thus the total SS is 5068 – 4704 = 364,  with 53 d.f. 
 

Order SS = 
2 2 2162 162 180 4704

18 18 18
+ + −  = 12,  with 2 d.f. 

 

Sex SS = 
2 2243 261 4704

27 27
+ −  = 6,  with 1 d.f. 

 

Age SS = 
2 2 2153 153 198 4704

18 18 18
+ + −  = 75,  with 2 d.f. 

 
The analysis of variance table can now be completed:- 
 

Source of variation SS df MS MS ratio  
Order (O)   12.000   2   6.00 1.44 – 
Sex (S)     6.000   1   6.00 1.44 – 
Age (A)   75.000   2 37.50 9.00 Compare F2,36  –  significant at 0.1% 
O × S   61.778   2 30.89 7.41 Compare F2,36  –  significant at 1% 
O × A   21.667   4   5.42 1.30 Compare F4,36  –  not significant 
S × A   21.000   2 10.50 2.52 Compare F2,36  –  not significant 
O × S × A   16.556   4   4.14 0.99 Compare F4,36  –  not significant 
Residual 149.999 36     4.167   
Total 364.000 53    

 
 
(ii) The factors "Order" and "Sex" interact.  The separate main effects of "Order" 
and "Sex" therefore have little useful meaning.  There is also a main effect of "Age", 
and this is clearly due to the "over 30" mean being much larger than that for "under 
20" and "21 – 30". 
 
Totals and means for "Order" and "Sex" are 
 
  TOTALS     MEANS  
 1 2 3   1 2 3 

M 68 75 100  M   7.56 8.33 11.11 
F 94 87   80  F 10.44 9.67   8.88 

 
 
 
 
 
 
See next page for interaction diagram and continuation of solution 
 



 

 

The "Order"–"Sex" interaction arises because males are much slower than females for 
order 3 whereas the opposite is true for order 1 (see diagram at foot of page).  For 
order 2, a t test is appropriate: 
 

9.67 8.33 1.39
2 4.167

9

− =
×

, 

 
which is not significant as an observation from t36;  the difference between males and 
females for order 2 is not statistically significant.  The same method can be used to 
show that the differences for orders 1 and 3 are statistically significant. 
 
 
(iii) Three orders were tried for male and female subjects from three age groups.  
There was a clear age effect with both sexes and all orders:  the average time taken by 
under-30s was substantially (statistically significantly) below that for over-30s.  
However, males and females reacted differently to the different orders.  For order 1, 
males were slower than females;  for order 2 this was true also, but the difference was 
not statistically significant;  for order 3, females were slower than males. 
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