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u
(i) S(t):'[tmf(u)du t>0 and hence
[S(eyar=] [ f(u)dudi

=" 7 (u){ J Oudt | du , integrating over the shaded region, t

E[X] = I:S(x)dx = .[011 dx + J.lmxe_(x_l)dx

1+ I:(u +1)e™"du  putting u =x — 1; now use I'(m) result quoted in the question

1+4T(2)+T(1) = 1+1+1 = 3.

(iii)
0 fory <1 (by definitions of X and of V)

1 for 0<y<l1
\/;e_(ﬁ_l) fory>1

SY(y)={
From (i), £[¥]=["1dy+["Jye ™ ay
=142[ (u+1)’e™du  putting u=[y-1
=1+2I(3)+4T(2)+2r'(1)
=1+(2%2)+(4x1)+(2x1) = 11 = E[ X*].
Therefore Var(X)zE[XZ]—{E[X]}2 =11-3*=2.
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. N )1(n=-1 L
[Note that J. . u" " (1-u) "du = M for all positive integers m, n.]

(m+n-1)!
3 (m+n—1)! L el
(a) E[U]—mju (1-u)"" du
_ (m+n-1)! 'm!(n—l)! _m
(m-1)(n-1)!  (m+n)! m+n
o 7 (m+n-1)! (m+1)!(n—1)!_ m(m+1)
Similarly. B[V =0 =t (mens ) (mem)(mansd)
Var _ m(m+1) ( m 2 :(m2+m)(m+n)—m2(m+n+1)
«Var(U) (m+n)(m+n+1) (m+nj (m+n)2(m+n+1)

(m+n)’ (m+n+1) (m+n) (m+n+1)

(b) fX(X)=J’1}:xl2xzdy=[12x2y]I = 12x°(1-x)  (for 0<x<1).

y=x

_[” 2 g _ 3P 3
Iy (y)—'[x:012x dx—[4x LO 4y (for 0< y<1).
Thus X has beta distribution with m = 3 and n = 2 ["B(3,2)"] and so has mean ¢ and

1 1
variance s .

Similarly, Y is B(4, 1) and so has mean ¢ and variance -
_ (" 2 (Y13
E[XY] = Lzoj.xzoxy.IZx dxdy = IO{J.Ol2x ydedy
1
1 1 1
=13 Sd — | —4° -

- Cov(X.Y) = E[XY]-E[X]E[Y] =

‘/77 i% _ L3~ o614,
25775 ~ 50/ | 25 3 2\2
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(i)  U*+V’ =(-2InX)(sin’ 22Y +cos’ 27Y)=2In X

—%(U2+V2) = InX so that X:exp[—%(U2+V2)}

=tan27Y, so Y =—rtan v

V. cos2xY 27

U sin2zY 1 _,(Uj

(i)  Since X and Y are independent U(0,1), f(X,¥Y)=1 (for0<x<1,0<y<1).

The jacobian of the transformation from X, Yto U, V'is

0X 09X —uexp(—l u* +v* j —vexp(—l u® +v* j
e 2 el ey )
Y 9dY Ll 1 L(_l] 1

U JV 2T v +(u/v)2 27’ '1+(u/v)2

=$exp(__{u i }j(+_+1j[1+(1—/)] _ _exp(__{u . }J

So f(u,\/') = |J|f(X,y) = iexp‘:—%(u2+v2):| (for_oo<u<oo’ _°°<V<°°).

(1i1) u,v) can be written as the product --g(u)h(v), where g(u), h(v) are
2

respectively exp(—%uzj, exp(—%vzj. Over (—oo,0), these will integrate to 1 if

they have the factor Hence U and V are independent and both are

1
N
12 2
N(0,1): f(u)=\/;_7[e_2 and f(v)=\/;_7[e2 defined over (—oo,00).

(iv)  Generate a pair of uniform random variates x, y in [0, 1], by any suitable
process to produce independent variates.

(a) Construct u, v as above to give independent N(0,1) variates.

(b)  u’, v’ are independent y; distributed variates. Hence u”+v’ is a ¥}
variate.
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: _ x| _ [T o« -6x (T p . -(6-1)x
(i) M,(t) = E[e = | e".fe%dx = IO Oe dx

_e—(e—t)x ~ 9
=6 = 7 7 (converges for ¢ <0).

-t |
L8 .o\ 26
MX(I)_(Q—t)z’ MX(t)_(H—t)3
E[X]=M, (0)= %.
E[XZ}:M;(O):é, hence Var(X)z%—(%j = %

(i1) Using the convolution and "linear transformation" results for moment
generating functions,

=<l Gf ()

so that

InM,(t)=—t n—nln{l+(—L]}
n
- _;_lﬁsz_l(;I_
) i)
:—t\/ﬁ+t\/ﬁ+%t2+
1,
—> —t"as n—>oo
2

sothat M, (1) —>e ™ as n—o.

This is the mgf of N(0,1), so Z — N(0,1).
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M Flug)=P(Uy Suy )=1-P(Uy > ) :1_[1_1’(”(1))}”

=1-(1-u,) forU©,1) (for 0<u, <1).

n—1

Hence f, (u(,)) = n(l—u(,)) (for 0<u, <I).

(11)  Using the multinomial expression for one observation at u,, one at u, and
n — 2 observations greater than u,,

n! n-2 .
Sz (u(l),u(z)) = —1!1!(11_2)!1.1.(1—F(u(2))) (since f(u(j)):l)

(n-2)
n(n—l)(l—u(z)) O<u(1), u(2)<1.

(i)  Change variables to W =U, -U,, Z=U,.
Hence Uy =Z and U, =W +Z.
al, dU,

0 1
| 9z =‘ ‘=—1,s0|J|=1.
AU, Wy| 11
ow  dZ

.'.f(w,z)=n(n—1)(l—{w+z})n_2 0<w<l, 0£z<1,0<w+2z<1.

1-w

Ry - (w) =n(n—l)jz=0 (l—w—z)n_zdz putz=y(1 —w);
thenl —w—-z=(1-w)(1-y)
and dz=(1-w)dy

n(n=1)[ {(1=w)(1=2)} " (1-w) dy

n(n=1)(1-w)" [ (1- )" dy
—n(n=1) (1) {_U—y)”‘

} = n(l-w)"  (for 0Sw<1),
0
which is the same pdf as that of U, .

n—1

(iv)  Forn=10, f, (w)=10(1-w)"  0<w<l.

P(W<0.1) = [ "10(1-w)" dw = [—(1—w)‘°}°'1 = 1-(0.9)" = 0.6513.

0
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(1) (a) P(not found) = P(not in region 1) + P(in 1 but not found)
=0,+0,+6,(1-a)= 1-08,.

(b) Let R. be the event that the aircraft came down in region / and NF the
event that it is not found. By Bayes' theorem,

P(NFIR)P(R) _ (1-2)6

P(R | NF)=
(R [NF) P(NF) 1-ab,
At this stage, P(NF|R,)=P(NF|R,)=1 since R,, R, have not been
examined.
92 03
Hence P(R,|NF)= and P(R,|NF)= .
1-06, -6,

(11) Once all three regions have been searched,

P(NF)=P(NF|R)P(R)+P(NF|R,)P(R,)+P(NF|R,)P(R,)
= (l-a)6+(1-2)6,+(1-a)8, = 1-«.
P(NF|R)P(R) (1-a)6

1

So P(R,| NF) = e =) " 6.

(ii1))  Given that the aircraft is actually in region i, then it may only be spotted on
sorties numbers 3(k—1)+i, for k=1, 2, 3, ... . The probability that it is spotted for

the first time on sortie number 3(k—1)+i is (l—a)k_] o, since the previous (k—1)

sorties in 7 were "failures".

1

Hence E[X | aircraft in region i] = i{3(k -1) +i}(l —a)k_ o
k=1

= 305511{(1—05)]‘_1 +(i—3)0¢2’0:(1—05)k_1 .

k=1 Pt
. . 2 3 1
For a geometric series, we have 1+ y+y° +3° +....... :1—
-y
and 1+2y+3y” +..... :i( ! j: ! .
dy\1-y (1_y)
Hence the above sum is (30{.%)+0{(i—3).l: —+i-3
o o o

Therefore E[X] = (i—2j61+(1—1j92+{1j03 = 2—261—92.
o o a
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(1) First generate by any available method a pseudo-random number between 0
and 1; call it u.

Now set F(x) = u, and solve this equation to find x=F"(u). This value x is a
pseudo-random member of the specified distribution.

If this is to work, F' must be easily invertible, either algebraically or numerically.

(i) (a) F(x)=1-e".
Ifu=F(x)=1-¢",then x=—In(1-u).
For the given four numbers, using them as u, we find

x=0.183; 0.269; 1.505; 3.442.

[NOTE: if u 1s U(0,1), so is (1 — u); so x =—Inu could be used.]

(b) F(x):j:(4z—4t3)dz:[2t2—f‘]’o‘:2x2—x4 (for 0<x<1).
If u=2x"—-x*, then we have x'-2x"+u=0, ie. (x2—1)2—1+u=0, or

x’—1=—J1-u (taking negative square root to obtain x < 1), which gives
x=+1—=+1—u . This gives x =0.295; 0.355; 0.727; 0.906.

(c) For the Poisson distribution, tables can be used to set up the
cumulative distribution (e.g. Examination Tables XII) or the c.d.f. can be
calculated by hand. When A =2, we have:

u

P(X=0)=0.1353 so F(0)=0.1353
P(X=1)=0.2707 so F(1)=0.4060 « 0.167,0.236
P(X =2)=0.2707 so F(2)=0.6767
P(X =3)=0.1804 so F(3)=0.8571 «— 0.778
P(X =4)=0.0902 so F(4)=0.9473

P(X=5)=0.0361 so F(5)=0.9834 « 0.968
and so on.

Any value of u up to 0.1352 corresponds to x = 1; u from 0.1353 to 0.4059 to
x=2; and so on. So we find 1, 1, 3, 5 as the random sample from the Poisson
distribution with mean 2.

F needs to be worked out as far into the tail of the distribution as necessary to
use all the given values of u.
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(1) Markov chain model is given by one-step transition matrix:

L D W
L 05 04 0.1
D 03 04 03
w 02 04 04

Call this T.

(i1) The two-step matrix is

0.5 04 0.1)f{05 04 0.1 039 040 0.21
T°=/03 04 03|03 04 03[=|033 040 0.27
02 04 04)02 04 04 0.30 0.40 0.30

So having lost game 1, game 3 is won with probability 0.21.

(i) M=(z, z, 7, ) , the stationary distribution, is given by

IT=IIT, 1.e. 7, =057, +0.37,+0.27,
7,=04r, +04x,+0.4x, = 04 (using 7, +7,+7x, =1)
z, =017, +0.37,+0.4r,

So, inserting 7, = 0.4, we have 0.57, =0.12+0.27x,,
and 0.6r, =0.12+0.17x, .

- 3.0, =0.60+0.57, =0.60+0.12+0.27,,, i.e. 2.87, =0.72.
Hence 7, =0.2571 and 7z, = 0.24+0.47, = 0.3429.

The expected number of points per game is (0x7, )+(1x7, )+ (3x7, )= 1.1713.
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