Name # CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level **SCIENCE** 5124/03, 5126/03 Paper 3 Chemistry May/June 2003 1 hour 15 minutes Additional Materials: Answer paper. ### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. #### Section A Answer all questions. Write your answers in the spaces provided on the question paper. #### **Section B** Answer any two questions. Write your answers on the lined paper provided and, if necessary, continue on separate answer paper. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 12. If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page. Stick your personal label here, if provided. | For Exam | iner's Use | |-----------|------------| | Section A | | | Section B | | | | | | | | | TOTAL | | This document consists of 9 printed pages and 3 lined pages. #### **Section A** ### Answer all the questions. Write your answers in the spaces provided on the question paper. ## 1 Complete the table in Fig. 1.1 | substance | symbol or formula | one use of the substance | |-----------|--------------------------------|--------------------------| | aluminium | | | | ethanol | | | | haematite | Fe ₂ O ₃ | | | helium | He | | [6] Fig. 1.1 ### 2 Read the information about A, B, C and D. ### Solid A **A** has a constant composition and decomposes into two elements when heated. ## Solid **B** **B** is coloured grey and attracted to a magnet. It cannot be decomposed into anything simpler. #### Solid C **C** is speckled black and white. The white particles dissolve in water but the black particles do not. #### Solid **D** **D** is black. It is formed by strongly heating copper in oxygen. ### Complete Fig. 2.1 by placing a tick (✔) in **one** box in each line. | substance | element | compound | mixture | |-----------|---------|----------|---------| | Α | | | | | В | | | | | С | | | | | D | | | | [4] Fig. 2.1 3 | (a) | E 15 | a hydrocarbon with the formula C_2H_6 . F is a hydrocarbon with the formula C_2H_4 . | |-----|-------------|---| | | (i) | Give the full structural formula of E and of F . | (ii) | How would you distinguish in the laboratory between E and F ? | | | | chemical test | | | | result with E | | | | result with F | | (| (iii) | Calculate the relative molecular mass of E . | | , | , | [Relative atomic masses A_r : H, 1; C, 12] | [5] | | (b) | (i) | [5] Explain why F can be polymerised but E cannot. | | (b) | (i) | | | (b) | (i) | Explain why F can be polymerised but E cannot. | | | | Explain why F can be polymerised but E cannot. | | | (i)
(ii) | Explain why F can be polymerised but E cannot. | | | | Explain why F can be polymerised but E cannot. | | | | Explain why F can be polymerised but E cannot. | | | (ii) | Explain why F can be polymerised but E cannot. Give the chemical structure of the polymer formed from F . | | | | Explain why F can be polymerised but E cannot. Give the chemical structure of the polymer formed from F . Explain why pollution is caused by | | | (ii) | Explain why F can be polymerised but E cannot. Give the chemical structure of the polymer formed from F . | | | (ii) | Explain why F can be polymerised but E cannot. Give the chemical structure of the polymer formed from F . Explain why pollution is caused by | | | (ii) | Explain why F can be polymerised but E cannot. Give the chemical structure of the polymer formed from F . Explain why pollution is caused by | | | (ii) | Explain why F can be polymerised but E cannot. Give the chemical structure of the polymer formed from F . Explain why pollution is caused by 1. dumping polymers, | **4** Fig. 4.1 describes some properties of gas **H** and its industrial preparation. The letters are not the chemical symbols of the substances. Fig. 4.1 - (a) Name (i) gas, H, (ii) colourless solution, I, (iii) colourless gas, J. (b) Give (i) the temperature, X, (ii) the pressure, Y. [2] - 5 Fig. 5.1 shows properties of four compounds **K**, **L**, **M** and **N**. | compound | state
at
20°C | approximate
boiling point
/°C | electrical
conductivity
of molten compound | |----------|---------------------|-------------------------------------|--| | K | gas | – 25 | poor conductor | | L | solid | 5000 | poor conductor | | M | solid | 1500 | good conductor | | N | liquid | 25 | poor conductor | Fig. 5.1 | (a) | | ticles of solids behave differently from particles of gases.
e three differences in behaviour. | |-----|-------|--| | | 1 | | | | 2 | | | | 3 | [3] | | (b) | Wri | te the letters of two compounds in Fig. 5.1 that | | | (i) | are gases at a temperature of 30 °C, | | | | and | | | (ii) | consist of simple molecules. | | | | and[2] | | (c) | (i) | Suggest how the atoms are bonded in compound ${\bf M}$ and compound ${\bf N}$. | | | | M | | | | N [2] | | | (ii) | Suggest why compound ${\bf M}$ has a higher boiling point than compound ${\bf N}$. | | | | | | | | [3] | | (a) | | oper(II) sulphate solution acts as a catalyst in the reaction of zinc and dilute ohuric acid. A gas is produced by the reaction. | | | (i) | What gas is produced? | | | (ii) | What is meant by a catalyst? | | | | | | | | | | | (iii) | How will the presence of a catalyst affect the time it takes for the reaction to stop? | | | | | | | (iv) | Give a reason for your answer to a(iii) above. | | | | [5] | 6 **(b)** The apparatus in Fig. 6.1 is used to investigate how changes in temperature affect the activity of the catalyst in the above reaction. Fig. 6.1 Complete Fig. 6.1 to show how to - (i) add a solution of the catalyst to the flask, - (ii) collect the gas being produced and measure its volume. [2] - (c) Why is a water bath needed? | [1] | |-----| |-----| (d) List three measurements you would take. #### **Section B** ## Answer any two questions. Write your answers on the lined pages provided and, if necessary, continue on separate answer paper. - 7 Caesium, lithium, potassium and sodium are all in Group I of the Periodic Table. - (a) Place these metals in order of reactivity with water, most reactive metal first. [1] - **(b)** Name the chemical products of the reactions between lithium and water and between sodium and water. [3] - (c) (i) What would you expect to **see** if small pieces of caesium were dropped onto water? How would the pH of the resulting solution be different from the pH of water? - (ii) Write the full chemical equation for the reaction of caesium with water. Include state symbols. - 8 Magnesium has a proton number of 12 and chlorine has a proton number of 17. - (a) Explain how and why a magnesium atom forms a magnesium ion and give the symbol for this ion. [6] - **(b)** Draw the electronic structure of the compound that results from magnesium combining with chlorine. All electron shells must be shown. [4] - 9 (a) Lime is an alkaline substance. Give two uses of lime that depend on this property. One of the uses must be in farming.[2] - **(b)** Fig. 9.1 shows some of the properties of a calcium compound, **O**. The letters are not the chemical symbols of the substances. Fig. 9.1 - (i) Suggest the identity of O, P, Q and R. - (ii) Name an acid that could be used to liberate gas Q from solid O. - (iii) Write an equation, including state symbols, for any one of the reactions shown in Fig. 9.1. [8] | | | | | | | 2 | | 1 | |-------|-----|--------------------|---------------------------|------------------------------------|-----------------------------------|-------------------------------------|----------------------------------|-------------------------| | | 0 | 4 He Helium | 20 Neon 10 | 40
Ar
Argon | 84
Krypton
36 | 131 Xe Xeon Xeon 54 | Ra don
86 | | | | NII | | 19 T Fluorine | 35.5 C1 Chlorine | 80
Br
Bromine
35 | 127 I lodine lodine 53 | At
Astatine
85 | | | | I | | 16
Oxygen
8 | 32
Sulphur
16 | 79
Se
Selenium
34 | 128
Te
Tellurium
52 | Po
Polonium
84 | | | | > | | 14 N Nitrogen 7 | 31
P
Phosphorus | 75
AS
Arsenic | 122
Sb
Antimony | 209 Bi Bismuth | | | | 2 | | 12
Carbon
6 | 28
Si
Silicon | 73
Ge
Germanium | 119
Sn
Tin | 207 Pb Lead | | | | = | | 11 Boron 5 | 27
A1
Aluminium
13 | 70 Ga Gallium 31 | 115 In Indium 49 | | | | | | | | | 65 Zn Zinc 30 | Æ | Hg
Mercury
80 | | | | | | | | | 108 Ag Silver 47 | | | | a a | | | | | 59 N ickel | 106 Pd Palladium 46 | 195 Pt Platinum 78 | | | Group | | | | | 59 Cobalt Cobalt 27 | 103
Rh
Rhodium
45 | 192 Ir
Iridium | _ | | Group | | 1 Hydrogen | | | 56
Iron | Bu Ruthenium 44 | 190
Os
Osmium
76 | | | • | | | | | Mn
Manganese | Tc Technetium 43 | 186 Re Rhenium 75 | | | | | | | | Chromium 24 | 96
Mo
Molybdenum
42 | 184 W Tungsten 7 | | | | | | | | 51
V
Vanadium
23 | 93
Nobium
A1 | 181 Ta Tantalum 73 | | | | | | | | 48 T Titanium 22 | 2r
Zirconium
40 | 178
Hf Hafnium 72 | L | | | | | | | Scandium 2 | 89 Y Yttrium 39 | 139 La Lanthanum 57 * 7 | Actinium † | | | = | | 9 Be Beryllium | Mg Magnesium | 40 Ca Calcium 2 | Strontium 3 | 137 Ba Barium 56 | 226 Rad Radium 8 | | | _ | | 7
Li
Lithium | 23
Na
Sodium | 39 K | Rb Rubidium 3 | 133 Cs Caesium 55 | Francium 8 | | | | | ო | | | Jun 03 | | ω | | 000000000000000000000000000000000000000 | 140 | 141 | 144 | | 150 | 152 | 157 | | 162 | 165 | | | 173 | 175 | |---|---------------|--------------------|-----------------|------------------|-----------------|-----------------|------------------|-----------------|-------------------|-------------------|----------------|--------------------|-----------------|-------------------| | אסיוסט סיוסט | Çe | Ą | PR | Pm | Sm | E | В | Д | ò | 운 | | | ΛÞ | 3 | | | Cerium
58 | Praseodymium
59 | Neodymium
60 | Promethium
61 | Samarium
62 | Europium
63 | Gadolinium
64 | 65 | Dysprosium
66 | Holmium
67 | Erbium
68 | Thulium
69 | Ytterbium
70 | Lutetium
71 | | a = relative atomic mass | 232 | | 238 | | | | | | | | | | | | | X = atomic symbol | T | Ра | - | Ν | Pu | Am | Cm | 路 | ₽ | Es | Fm | | N _o | בֿ | | b = proton (atomic) number | Thorium
90 | Protactinium
91 | Uranium
92 | Neptunium
93 | Plutonium
94 | Americium
95 | Curium
96 | Berkelium
97 | Californium
98 | Einsteinium
99 | Fermium
100 | Mendelevium
101 | Nobelium
102 | Lawrencium
103 | **в** 🗙 Key *58-71 Lanthanoid series †90-103 Actinoid series The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).