	Centre Number	Number
Candidate Name		

CAMBRIDGE INTERNATIONAL EXAMINATIONS

Joint Examination for the School Certificate and General Certificate of Education Ordinary Level

SCIENCE

5124/3, 5126/3

PAPER 3 Chemistry

OCTOBER/NOVEMBER SESSION 2002

1 hour 15 minutes

Additional materials: Answer paper

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page and on all separate answer paper used.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer any two questions.

Write your answers on the lined pages provided and, if necessary, continue on separate answer paper. At the end of the examination,

- fasten any separate answer paper securely to the question paper;
- 2. enter the numbers of the **Section B** questions you have answered in the grid below.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed on page 12.

FOR EXAMINER'S USE	
Section A	
Section B	
TOTAL	

Section A

Answer all the questions.

Write your answers in the spaces provided on the question paper.

1 Use the names of the substances in Fig. 1.1 to answer this question.

ammonium sulphate	ethanoic acid	graphite	helium
lime	methanol	oxygen	steel

Fig. 1.1

	Nan	ne	
	(a)	an allotrope of carbon,	[1]
	(b)	an alloy,	[1]
	(c)	a fertiliser,	[1]
	(d)	a noble gas,	[1]
	(e)	an oxide.	[1]
2		process of photosynthesis takes place in Why are green plants essential to this pro	
			[1]
	(b)	Name two substances that react togethe	r to produce glucose during this process.
			. [2]
	(c)	What type of energy is converted into che	emical energy during this process?
			. [1]

3 Fig. 3.1 lists the solubility in water of several substances.

substances	solubility in water
lead(II) carbonate	insoluble
sodium sulphate	soluble
calcium carbonate	insoluble
sodium hydroxide	soluble
lead(II) chloride	insoluble
lead(II) nitrate	soluble
sodium carbonate	soluble
hydrochloric acid	soluble
nitric acid	soluble
sulphuric acid	soluble

Fig. 3.1

(a)		ne two substances from Fig. 3.1 that when mixed as aqueous solutions form $I(II)$ carbonate.
		[1]
(b)	(i)	Name ${\it two}$ substances from Fig. 3.1 that when mixed as aqueous solutions form sodium sulphate.
		and[1]
	(ii)	How would you obtain pure crystals of sodium sulphate from the mixture of solutions in (i)?
		[3]

4 The diagram in Fig. 4.1 represents the nuclei of five different atoms, A, B, C, D and E.

Choose from the letters A, B, C, D and E, to answer the following questions.

- (b) Which two atoms have three electrons in their outermost electron shell?

 and [2]

 (c) Which two atoms are isotopes of the same element?

 and [1]

 (d) Which atom is an isotope of hydrogen?
- 5 Use the Periodic Table on page 12 to help answer this question.
 - (a) State one way in which the elements in Group I differ from the elements in Group VII.

 [1]
 - (b) Which Group contains only

(a) Which atom has a nucleon number of 6?

- (i) relatively soft metals,[1]
- (ii) diatomic non-metals?[1]
- (c) Which element
 - (i) is in Group V and in period 3,[1]
 - (ii) has a proton number of 79?[1]

6 Fig. 6.1 shows some properties and reactions of several substances.

Fig. 6.1

(a) Identify:

- (i) white solid G,
 (ii) green precipitate H,
 (iii) brown solid I,
 (iv) green solid F.
- (b) Write an equation for any one of the reactions in Fig. 6.1.

[2]

7 (a) Complete the table in Fig. 7.1.

	solution	colour with Universal Indicator solution
(i)	0.1 mol/dm ³ hydrochloric acid	
(ii)	0.1 mol/dm ³ sodium hydroxide solution	
(iii)	a mixture of equal volumes of (i) and (ii)	

Fig. 7.1 [3]

(b)	Cald	culate the relative molecular mass of sodium hydroxide, NaOH.	
		[Relative atomic masses: A_r : H, 1; O, 16; Na, 23]	
(c)	Cald	culate the mass of sodium hydroxide in	[1]
	(i)	1000 cm ³ of 1.0 mol/dm ³ sodium hydroxide solution,	
	(')	1000 cm Of 1.0 mor/ am Social Hydroxide Soldion,	
((ii)	1000 cm ³ of 0.1 mol/dm ³ sodium hydroxide solution,	
·	•		
			[1]
(i	iii)	20 cm ³ of 0.1 mol/dm ³ sodium hydroxide solution.	
			[1]
		aree of the reactions below involve both oxidation and reduction? ese reactions by ticking three of the boxes.	
		$Na_2CO_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + CO_2(g)$	
		$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$	
		$C(s) + O_2(g) \rightarrow CO_2(g)$	
		$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$	
		$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$	
		$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$	
		$NH_4Cl(s) \rightarrow NH_3(g) + HCl(g)$	[3]

9 The diagrams in Fig. 9.1 show the structures of five compounds.

Fig. 9.1

Answer the questions below by stating the numbers of the diagrams.

- (a) Which diagram shows

......and[1]

Section B

Answer any two questions.

Write your answers on the lined pages provided, and, if necessary, continue on separate answer paper.

- **10 (a)** Describe, using **one** suitable example, the formation of covalent bonds between two non-metals. [4]
 - (b) Describe how ionic and covalent compounds differ in solubility and electrical conductivity. Use suitable examples to illustrate your answer. [6]
- **11** (a) A solid and a liquid react to form a gas which is insoluble in water. Design and draw a labelled diagram of an apparatus that could be used to collect this gas. [3]
 - (b) Explain how your apparatus can be used to measure the rate of reaction between the solid and the liquid. [3]
 - (c) How can your results from (b) be displayed to show how the rate of reaction gradually slows down and eventually stops? [4]
- 12 (a) Describe how iron can be manufactured from a named ore using coke, C, and limestone, CaCO₃. Write equations for the decomposition of limestone and for the reduction of the ore.
 [6]
 - **(b)** Calculate the maximum mass of carbon dioxide that will be formed by decomposing 25 tonnes of limestone.

[Relative atomic masses: A_r : C, 12; O, 16; Ca, 40] [4]

DATA SHEET
The Periodic Table of the Elements

	0	He Helium	20 Neon 10 A 40 A Argon	84 Kr Krypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
Group			19 Fluorine 9 35.5 C1 Chlorine 17	80 Br Bromine	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	
	>		16 Oxygen 8 32 S Sulphur	79 Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thullum 69	Md Mendelevium 101
	>		Nitrogen 7 31 Ph Phosphorus	75 AS Arsenic 33	Sb Antimony 51			167 Er Erbium 68	Fm Fermium 100
	≥		Carbon 6 Carbon 8 Silicon 14	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead 82		165 Ho Holmium 67	ES Einsteinium 99
	=		11 B Boron 5 27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T1 Thallium		162 Dy Dysprosium 66	Californium 98
				65 Zn Zinc 30	Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97
				64 Cu Copper	108 Ag Silver 47	197 Au Gold 79		157 Gd Gadolinium 64	Carrium 96
				59 Ni Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium
			7	59 Cobalt	103 Rh Rhodium 45			Sm Samarium 62	Pu Plutonium 94
		1 Hydrogen		56 Fe Iron	101 Rut Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Np Neptunium 93
				Manganese	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 C Uranium
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91
				51 V Vanadium 23	Nobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Th Thorium
				48 T itanium	91 Zr Sirconium 40	178 Hf Hafnium 72			nic mass bol nic) number
				Scandium 21	89 ×	139 La Lanthanum 57 *	227 Ac Actinium 89	l series series	 a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Beryllium 4 24 Magnesium 12	40 Calcium 20	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series †90-103 Actinoid series	œ × ⇔
	_		Lithium 3 Lithium 3 23 23 Na Sodium 11	39 K	85 Rubidium 37	133 Csaesium 55	Fr Francium 87	*58-71 L †90-103	Key

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).