| | Centre Number | Number | |----------------|---------------|--------| | Candidate Name | | | #### **CAMBRIDGE INTERNATIONAL EXAMINATIONS** Joint Examination for the School Certificate and General Certificate of Education Ordinary Level **SCIENCE** 5124/3, 5126/3 PAPER 3 Chemistry OCTOBER/NOVEMBER SESSION 2002 1 hour 15 minutes Additional materials: Answer paper TIME 1 hour 15 minutes #### **INSTRUCTIONS TO CANDIDATES** Write your name, Centre number and candidate number in the spaces at the top of this page and on all separate answer paper used. #### Section A Answer all questions. Write your answers in the spaces provided on the question paper. #### **Section B** Answer any two questions. Write your answers on the lined pages provided and, if necessary, continue on separate answer paper. At the end of the examination, - fasten any separate answer paper securely to the question paper; - 2. enter the numbers of the **Section B** questions you have answered in the grid below. #### INFORMATION FOR CANDIDATES The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 12. | FOR EXAMINER'S USE | | |--------------------|--| | Section A | | | Section B | | | | | | | | | TOTAL | | ## **Section A** # Answer all the questions. Write your answers in the spaces provided on the question paper. 1 Use the names of the substances in Fig. 1.1 to answer this question. | ammonium sulphate | ethanoic
acid | graphite | helium | |-------------------|------------------|----------|--------| | lime | methanol | oxygen | steel | Fig. 1.1 | | Nan | ne | | |---|-----|--|---| | | (a) | an allotrope of carbon, | [1] | | | (b) | an alloy, | [1] | | | (c) | a fertiliser, | [1] | | | (d) | a noble gas, | [1] | | | (e) | an oxide. | [1] | | 2 | | process of photosynthesis takes place in Why are green plants essential to this pro | | | | | | [1] | | | (b) | Name two substances that react togethe | r to produce glucose during this process. | | | | | | | | | | . [2] | | | (c) | What type of energy is converted into che | emical energy during this process? | | | | | . [1] | **3** Fig. 3.1 lists the solubility in water of several substances. | substances | solubility
in water | |--------------------|------------------------| | lead(II) carbonate | insoluble | | sodium sulphate | soluble | | calcium carbonate | insoluble | | sodium hydroxide | soluble | | lead(II) chloride | insoluble | | lead(II) nitrate | soluble | | sodium carbonate | soluble | | hydrochloric acid | soluble | | nitric acid | soluble | | sulphuric acid | soluble | Fig. 3.1 | (a) | | ne two substances from Fig. 3.1 that when mixed as aqueous solutions form $I(II)$ carbonate. | |-----|------|--| | | | [1] | | (b) | (i) | Name ${\it two}$ substances from Fig. 3.1 that when mixed as aqueous solutions form sodium sulphate. | | | | and[1] | | | (ii) | How would you obtain pure crystals of sodium sulphate from the mixture of solutions in (i)? | | | | | | | | | | | | [3] | 4 The diagram in Fig. 4.1 represents the nuclei of five different atoms, A, B, C, D and E. Choose from the letters A, B, C, D and E, to answer the following questions. - (b) Which two atoms have three electrons in their outermost electron shell? and [2] (c) Which two atoms are isotopes of the same element? and [1] (d) Which atom is an isotope of hydrogen? - 5 Use the Periodic Table on page 12 to help answer this question. - (a) State one way in which the elements in Group I differ from the elements in Group VII.[1] - (b) Which Group contains only (a) Which atom has a nucleon number of 6? - (i) relatively soft metals,[1] - (ii) diatomic non-metals?[1] - (c) Which element - (i) is in Group V and in period 3,[1] - (ii) has a proton number of 79?[1] **6** Fig. 6.1 shows some properties and reactions of several substances. Fig. 6.1 (a) Identify: - (i) white solid G, (ii) green precipitate H, (iii) brown solid I, (iv) green solid F. - (b) Write an equation for any one of the reactions in Fig. 6.1. [2] 7 (a) Complete the table in Fig. 7.1. | | solution | colour with
Universal Indicator solution | |-------|---|---| | (i) | 0.1 mol/dm ³ hydrochloric acid | | | (ii) | 0.1 mol/dm ³ sodium hydroxide solution | | | (iii) | a mixture of equal volumes of (i) and (ii) | | **Fig. 7.1** [3] | (b) | Cald | culate the relative molecular mass of sodium hydroxide, NaOH. | | |-----|------|---|-----| | | | [Relative atomic masses: A_r : H, 1; O, 16; Na, 23] | | | | | | | | (c) | Cald | culate the mass of sodium hydroxide in | [1] | | | (i) | 1000 cm ³ of 1.0 mol/dm ³ sodium hydroxide solution, | | | | (') | 1000 cm Of 1.0 mor/ am Social Hydroxide Soldion, | | | | | | | | (| (ii) | 1000 cm ³ of 0.1 mol/dm ³ sodium hydroxide solution, | | | · | • | | | | | | | [1] | | (i | iii) | 20 cm ³ of 0.1 mol/dm ³ sodium hydroxide solution. | | | | | | | | | | | [1] | | | | aree of the reactions below involve both oxidation and reduction? ese reactions by ticking three of the boxes. | | | | | $Na_2CO_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + CO_2(g)$ | | | | | $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ | | | | | $C(s) + O_2(g) \rightarrow CO_2(g)$ | | | | | $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$ | | | | | $NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$ | | | | | $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$ | | | | | $NH_4Cl(s) \rightarrow NH_3(g) + HCl(g)$ | [3] | **9** The diagrams in Fig. 9.1 show the structures of five compounds. Fig. 9.1 Answer the questions below by stating the numbers of the diagrams. - (a) Which diagram showsand[1] #### Section B ### Answer any two questions. Write your answers on the lined pages provided, and, if necessary, continue on separate answer paper. - **10 (a)** Describe, using **one** suitable example, the formation of covalent bonds between two non-metals. [4] - (b) Describe how ionic and covalent compounds differ in solubility and electrical conductivity. Use suitable examples to illustrate your answer. [6] - **11** (a) A solid and a liquid react to form a gas which is insoluble in water. Design and draw a labelled diagram of an apparatus that could be used to collect this gas. [3] - (b) Explain how your apparatus can be used to measure the rate of reaction between the solid and the liquid. [3] - (c) How can your results from (b) be displayed to show how the rate of reaction gradually slows down and eventually stops? [4] - 12 (a) Describe how iron can be manufactured from a named ore using coke, C, and limestone, CaCO₃. Write equations for the decomposition of limestone and for the reduction of the ore. [6] - **(b)** Calculate the maximum mass of carbon dioxide that will be formed by decomposing 25 tonnes of limestone. [Relative atomic masses: A_r : C, 12; O, 16; Ca, 40] [4] DATA SHEET The Periodic Table of the Elements | | 0 | He Helium | 20
Neon
10
A 40
A Argon | 84 Kr
Krypton 36 | 131 Xe Xenon 54 | Radon
86 | | 175 Lu Lutetium 71 | Lr
Lawrencium
103 | |-------|---|------------------|--|------------------------------------|--------------------------------------|------------------------------------|---------------------------|---|---| | Group | | | 19 Fluorine 9 35.5 C1 Chlorine 17 | 80
Br
Bromine | 127 I lodine 53 | At
Astatine
85 | | 173
Yb
Ytterbium
70 | | | | > | | 16
Oxygen
8
32
S
Sulphur | 79 Selenium 34 | 128 Te Tellurium 52 | Po Polonium 84 | | 169
Tm
Thullum
69 | Md
Mendelevium
101 | | | > | | Nitrogen 7 31 Ph Phosphorus | 75 AS Arsenic 33 | Sb
Antimony
51 | | | 167
Er
Erbium
68 | Fm
Fermium
100 | | | ≥ | | Carbon 6 Carbon 8 Silicon 14 | 73
Ge
Germanium
32 | 119
Sn
Tin | 207 Pb Lead 82 | | 165
Ho
Holmium
67 | ES
Einsteinium
99 | | | = | | 11
B
Boron
5
27
A1
Aluminium
13 | 70
Ga
Gallium
31 | 115
In
Indium
49 | 204 T1 Thallium | | 162
Dy
Dysprosium
66 | Californium
98 | | | | | | 65
Zn
Zinc
30 | Cadmium 48 | 201
Hg
Mercury
80 | | 159
Tb
Terbium
65 | BK Berkelium 97 | | | | | | 64
Cu
Copper | 108 Ag
Silver
47 | 197
Au
Gold
79 | | 157
Gd
Gadolinium
64 | Carrium
96 | | | | | | 59 Ni Nickel | 106
Pd
Palladium
46 | 195
Pt
Platinum
78 | | 152
Eu
Europium
63 | Am Americium | | | | | 7 | 59
Cobalt | 103
Rh
Rhodium
45 | | | Sm
Samarium
62 | Pu Plutonium 94 | | | | 1
Hydrogen | | 56
Fe
Iron | 101
Rut
Ruthenium
44 | 190
Os
Osmium
76 | | Pm Promethium 61 | Np
Neptunium
93 | | | | | | Manganese | Tc
Technetium
43 | 186
Re
Rhenium
75 | | Neodymium 60 | 238 C Uranium | | | | | | 52
Cr
Chromium
24 | 96
Mo
Molybdenum
42 | 184 W Tungsten 74 | | Pr
Praseodymium
59 | Pa
Protactinium
91 | | | | | | 51
V
Vanadium
23 | Nobium 41 | 181 Ta Tantalum 73 | | 140 Ce Cerium 58 | 232 Th Thorium | | | | | | 48 T itanium | 91 Zr Sirconium 40 | 178 Hf
Hafnium 72 | | | nic mass
bol
nic) number | | | | | | Scandium 21 | 89 × | 139 La Lanthanum 57 * | 227 Ac Actinium 89 | l series
series | a = relative atomic mass X = atomic symbol b = proton (atomic) number | | | = | | Beryllium 4 24 Magnesium 12 | 40 Calcium 20 | Strontium | 137 Ba Barium 56 | 226 Ra Radium 88 | *58-71 Lanthanoid series
†90-103 Actinoid series | œ × ⇔ | | | _ | | Lithium 3 Lithium 3 23 23 Na Sodium 11 | 39 K | 85
Rubidium
37 | 133
Csaesium
55 | Fr Francium 87 | *58-71 L
†90-103 | Key | The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).