| | Centre Number | Candidate
Number | |----------------|---------------|---------------------| | Candidate Name | | | # CAMBRIDGE INTERNATIONAL EXAMINATIONS **General Certificate of Education Ordinary Level** 5124/3 **SCIENCE** PAPER 3 Chemistry **MAY/JUNE SESSION 2002** 1 hour 15 minutes Additional materials: Answer paper 1 hour 15 minutes TIME #### **INSTRUCTIONS TO CANDIDATES** Write your name, Centre number and candidate number in the spaces at the top of this page and on all separate answer paper used. #### Section A Answer all questions. Write your answers in the spaces provided on the question paper. ### Section B Answer any two questions. Write your answers on the lined pages provided and, if necessary, continue on separate answer paper. At the end of the examination, - fasten any separate answer paper securely to the question paper; 1. - 2. enter the numbers of the Section B questions you have answered in the left hand column of the grid below. ### INFORMATION FOR CANDIDATES The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 12. | FOR EXAMINER'S USE | | | | | |--------------------|--|--|--|--| | Section A | | | | | | Section B | | | | | | | | | | | | | | | | | | TOTAL | | | | | This question paper consists of 11 printed pages and 1 lined page. ## **Section A** ## Answer **all** the questions. Write your answers in the spaces provided on the question paper. 1 Classify the substances in Fig. 1.1 as either element, compound or mixture by ticking the appropriate box. The first has been done for you. | substance | element | compound | mixture | |------------------|---------|----------|---------| | copper | 1 | | | | copper(II) oxide | | | | | air | | | | | oxygen | | | | | lime | | | | | steel | | | | Fig. 1.1 | 1 | h | | |---|---|---| | ı | J | ١ | | L | | • | | 2 | (a) | Wha | at must be present, with water and oxygen, for rust to form? | | |---|-----|---------|---|--| | | (b) |
(i) | Give two methods of rust prevention. | | | | | | 1. 2. | | | | | (ii) | Explain how one of the methods you have given in (i) prevents rusting. | | | | | | | | 3 Fig. 3.1 gives the properties of four substances, A, B, C and D. | | melting point | solubility | electrical
conductivity | | | |---|---------------|-------------------|----------------------------|--------|--| | | | in water | solid | liquid | | | Α | high | soluble | no | yes | | | В | high | insoluble | yes | yes | | | С | low | insoluble | no | no | | | D | low | reacts with water | yes | yes | | Fig. 3.1 (a) Classify these four substances as either an ionic compound, a covalent compound or a metal by ticking the appropriate box in Fig. 3.2. | | ionic
compound | covalent
compound | metal | |---|-------------------|----------------------|-------| | Α | | | | | В | | | | | С | | | | | D | | | | Fig. 3.2 | [/] | | |-----|--| | [+ | | [3] | (b) | Name a substance which has the same properties as | | | | | | | | |-----|---|----|--|--|--|--|--|--| | | (i) | A, | | | | | | | | | (ii) | В, | | | | | | | | | (iii) | C. | | | | | | | 5124/3/M/J/02 **[Turn over** | Use your knowledge of the kinetic particle theory to suggest a reason for each of the following. | |--| | (a) Wet clothes dry more quickly on warm days than on cold days. | | | | [1] | | (b) Solid ice loses its shape when it melts. | | | | [1] | | (c) Sugar dissolves faster in hot water than in cold water. | | | | [1] | | | | (d) When salt is dissolved in a glass of water without stirring, all of the water soon tastes salty. | | | | [1] | - 5 The metal lithium reacts with air and water. - (a) Suggest how lithium should be stored. **(b)** A student reacted lithium with water using the apparatus shown in Fig. 5.1. Fig. 5.1 The student measured the volume of gas at intervals of 30 seconds. The results are shown in Fig. 5.2. | time/s | 0 | 30 | 60 | 90 | 120 | 150 | |------------------------|---|----|----|----|-----|-----| | volume/cm ³ | 0 | 40 | 60 | 74 | 86 | 96 | Fig. 5.2 Plot a graph of these results on the grid below. Use the vertical axis to plot volume. [2] (c) Tick a box in Fig. 5.3 to show when the ${\bf rate\ of\ reaction}$ was greatest. | at time/s | 5 | 35 | 65 | 95 | 125 | |---------------------------|---|----|----|----|-----| | greatest rate of reaction | | | | | | Fig. 5.3 [1] | (d) | Hov | can the student find the time taken for the reaction to stop? | |-----|------|--| | | | [1] | | (e) | | temperature of the water increased during the reaction. How would you classify reaction? | | | | [1] | | (f) | (i) | Name the gas liberated in this reaction. | | | (ii) | Describe a test to confirm the presence of this gas. | | | | | | | | [3] | | (g) | (i) | Universal Indicator is added to the solution in the trough at the end of the experiment. | | | | What colour will you see? | | | (ii) | What ions, present in this solution, cause this change? | | | | [2] | - 6 Polymers are produced from monomers. - (a) Draw the part of a polymer molecule formed by joining the three monomer molecules shown in Fig. 6.1. [1] **(b)** When *Terylene* is produced as a result of condensation polymerisation, some far smaller molecules of another compound are formed. Name this compound. | [1] | |-----| |-----| (c) Give one use for Terylene. | Γ-4 | ٦. | |-------|----| | . 1 1 | 1 | | ъ. | J | (d) State one disadvantage of the large-scale use of plastics. 7 The element bismuth is manufactured by reducing its oxide, ${\rm Bi_2O_3}$, with carbon. (a) (i) Give the full name of this oxide. (ii) Calculate the relative molecular mass of this oxide. [Relative atomic masses, A_r: O, 16; Bi, 209] [2] (b) (i) Balance the chemical equation shown below for the reduction process. $$\text{Bi}_2\text{O}_3(\text{s}) \ + \ \text{C}(\text{s}) \ \rightarrow \ \text{Bi}(\text{s}) \ + \ \text{CO}(\text{g})$$ (ii) What does the symbol '(g)' indicate? (iii) Calculate the maximum mass of bismuth that can be prepared from 932 tonnes of the oxide. [4] **8** Fig. 8.1 shows the properties and reactions of several substances. Fig. 8.1 ## Identify | (a) | the white precipitate H , | [1] | |-----|----------------------------------|-----| | (b) | the green precipitate G , | [1] | | (c) | the liquid F , | [1] | | (d) | the green crystals E. | [1] | 5124/3/M/J/02 **[Turn over** #### **Section B** Answer any two questions. Write your answers on the lined pages provided and, if necessary, continue on separate answer paper. - **9** (a) Describe the fractional distillation of crude oil (petroleum). [5] - (b) Suggest reasons why substances like crude oil can be separated into different fractions by fractional distillation but **not** substances like limestone, CaCO₃. [3] - (c) Methane, CH₄, can be produced from crude oil. What is the mass of 12 000 dm³ of this gas at room temperature and pressure? [Relative atomic masses, $$A_r$$: H, 1; C, 12] [2] - **10 (a)** Describe how crystals of copper(II) sulphate can be prepared from copper(II) oxide and sulphuric acid. Write the equation for the reaction. [7] - **(b)** Crystals of copper(II) sulphate have the formula CuSO₄.5H₂O. Calculate the percentage of water of crystallisation in the crystals. [Relative atomic masses, $$A_r$$: H, 1; O, 16; S, 32; Cu, 64] [3] - (a) Describe the reactions, if any, of the metals calcium, copper and sodium with cold water. Use these reactions to place the metals in order of reactivity, most reactive first. Write the equation for any one of these reactions. - (b) Aluminium does not react with cold water. Does this give a true indication of the reactivity of this element? Explain your answer. [2] DATA SHEET The Periodic Table of the Elements | | | 0 | 4 Helium | 20 Neon | 40 Ar Argon | 84
Kr
Krypton | 131
Xe
Xenon | Rn
Radon | | 175
Lu
Lutetium | Lr
Lawrencium
103 | |-----------------------------------|-------|---|------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------------|-----------------------------------|--------------------------------|---|---| | | | | ~ ~ | 10 | 18 | 36 | 54 | 86 | | | | | | | ₹ | | 19
Fluorine | 35.5 C1 Chlorine | 80
Br
Bromine
35 | 127 I lodine 53 | At
Astatine
85 | | Yb
Ytterbium
70 | Nobelium
102 | | | | > | | 16
Oxygen | 32
S
Sulphur
16 | 79
Se
Selenium
34 | Tellurium | Po Polonium 84 | | 169 Tm Thulium 69 | Md
Mendelevium
101 | | | | > | | 14 N itrogen 7 | 31
P
Phosphorus
15 | 75
AS
Arsenic
33 | 122
Sb
Antimony
51 | 209
Bi
Bismuth
83 | | 167
Er
Erbium
68 | Fm
Fermium
100 | | | | ≥ | | 12
C
Carbon
6 | 28
Silcon | 73
Ge
Germanium
32 | 20 Tin 50 | 207 Pb Lead 82 | | 165
Ho
Holmium
67 | Einsteinium | | | | ≡ | | 11 Boron | 27
A1
Aluminium
13 | 70
Ga
Gallium
31 | 115
In
Indium
49 | 204 T1 Thallium 81 | | 162
Dy
Dysprosium
66 | Californium 98 | | ıts | | | | | | 65
Zn
Zinc | Cadmium 48 | 201
Hg
Mercury
80 | | 159 Tb Terbium 65 | Bk
Berkelium
97 | | he Periodic Table of the Elements | | | | | | 64
Copper
29 | 108 Ag Silver 47 | 197
Au
Gold | | Gadolinium 64 | Curium
96 | | le of the | Group | | | | | 59 Nickel | 106 Pd Palladium 46 | 195 Pt Platinum 78 | | 152
Eu
Europium
63 | Am
Americium
95 | | odic I ab | | | | 1 | | 59
Co balt
27 | 103 Rh Rhodium 45 | 192 Ir Iridium 77 | | Samarium 62 | Pu Plutonium 94 | | he Perio | | | 1 Hydrogen | | | 56
Iron | Bu
Ruthenium
44 | 190
Os
Osmium
76 | | Pm
Promethium
61 | Neptunium 93 | | _ | | | | | | Mn
Manganese
25 | Tc
Technetium | 186
Re
Rhenium | | Neodymium 60 | 238 C Uranium | | | | | | | | Cr
Chromium
24 | 96
Mo
Molybdenum
42 | 184 W Tungsten 74 | | 141
Pr
Praseodymium
59 | Pa Protactinium 91 | | | | | | | | 51
Vanadium
23 | 93
Nb
Niobium
41 | 181 Ta Tanalum | | 140 Ce Cerium 58 | 232
Tb
Thorium | | | | | | | | 48 Ti Titanium | Zr
Zirconium
40 | 178 Hf
Hafnium 72 | | | nic mass
Ibol
nic) number | | | | | | | | Scandium 21 | 89 × Yttrium 39 | 139 La Lanthanum 57 * | 227
AC
Actinium + | id series
series | a = relative atomic mass X = atomic symbol b = proton (atomic) number | | | | = | | 9
Be
Beryllium | Mg
Magnesium | Ca Calcium | Strontium | 137 Ba Barium 56 | 226 Ra Radium 88 | *58-71 Lanthanoid series
†90-103 Actinoid series | w × | | | | _ | | 7
Lithium | 23
Na
Sodium | 39 Rotassium | 85
Rb
Rubidium | Caesium | Francium | -71 I | Key | The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).