CAMBRIDGE INTERNATIONAL EXAMINATIONS **Cambridge Ordinary Level** # www.PapaCambridge.com MARK SCHEME for the October/November 2014 series ### **5054 PHYSICS** 5054/22 Paper 2 (Theory), maximum raw mark 75 This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers. Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers. Cambridge will not enter into discussions about these mark schemes. Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components. ® IGCSE is the registered trademark of Cambridge International Examinations. | Page 2 | Mark Scheme | Sy. Oper | |--------|---|----------| | | Cambridge O Level – October/November 2014 | 505 | ## Section A | 1 | (a) | limi | t of proportionality (<u>not</u> breaking point) | B1 | Tig | |---|-----|------|---|----------------|-----| | | (b) | (i) | 8.5 cm cao | В1 | | | | | (ii) | 7.1 – 7.3 cm | B1 | | | | (c) | | \times (2.7/7.2) or 5.0 \times (2.7/9.0) or 1.5 (N) or read from graph or 11.2 (cm) 48 $-$ 0.152 kg or 148 $-$ 152 g | C1
A1 | [5] | | 2 | (a) | (i) | Fd or 2.5 × 0.18
0.45 N m | C1
A1 | | | | | (ii) | force not applied at right angles to the tap | B1 | | | | (b) | | g(er) distance needs small(er) force (for same moment) or inversely ited/proportional | B1 | [4] | | 3 | (a) | 1.0 | = p_2V_2/p_1 or $p \propto 1/V$
$\times 10^5 \times (1.8/2.0) \times 10^7$
$\times 10^{-3}$ m ³ or 9000 cm ³ | B1
C1
A1 | | | | (b) | (i) | $(\rho =) m/V \text{ or } (0.30/9.0) \times 10^{-3}$
33(.3333)kg/m ³ or 0.033(3333)g/cm ³ | C1
A1 | | | | | (ii) | helium mass/weight small (fraction of total/mass of air included) or this includes the weight of the cylinder | B1 | [6] | | 4 | (a) | (i) | heat gained from burning fuel/combustion or friction between moving parts/with air/road or from (radiation of) Sun | B1 | | | | | (ii) | heat lost to air/surroundings or by convection (currents) or exhaust/hot gases/fumes or from exhaust or heat emitted (by hot car) or by radiation | B1 | | | | (b) | gra | start chemical energy decreases or at start chemical energy to vitational/potential energy (of car) increases or at end of process etic energy (of car or air) increases | B1
B1
B1 | [5] | | P | age : | 3 | Mark Scheme S | 3.0 | er | | | | |---|-------|--|--|-----------------------|-----------|--|--|--| | | ugo (| | Cambridge O Level – October/November 2014 | 505 Addage | <u>S.</u> | | | | | 5 | (a) | hor | vnward curve of correct curvature from marked 90°C
rizontal line at marked 58°C
vnward (asymptotic) curve of correct curvature to marked 23°C | 505 BHACA
B1
B1 | hbridge | | | | | | (b) | Ηn | narked halfway (by eye) along an intermediate horizontal line | | | | | | | | (c) | (Q
990 | =) <i>mL</i> or 45 × 220
00 J | C1
A1 | [6] | | | | | 6 | (a) | | (the molecules) move faster or have more kinetic energy or accelerate ignore vibrate faster | | | | | | | | (b) | (i) | faster/energetic molecules escape average speed decreases or slower molecules remain | B1
B1 | | | | | | | | | temperature depends on average KE or heat taken from runner OR liquid becomes gas/vapour latent heat needed or bonds broken heat taken from runner | B1 | | | | | | | | (ii) | water vapour blown away or surrounding air less humid | B1 | [5] | | | | | 7 | (a) | (i) | lasts longer or one cell can be replaced without switching off the circuless (internal) resistance or if one fails the others still work | it or
B1 | | | | | | | | (ii) | 1.5 V | B1 | | | | | | | (b) | (i) | (R =)V/I or $1.5/0.07520 (\Omega) or 1.5/(0.075 - 6.0)14 \Omega$ | C1
C1
A1 | | | | | | | | (ii) | decreases resistance of wire increases | B1
B1 | [7] | | | | | 8 | (a) | one label correct <u>and</u> not contradicted
C, 1S and 1B all correct and clear <u>and</u> none contradicted | | C1
A1 | | | | | | | (b) | any
ma
(co
(ele
bru | B3 | | | | | | | | (c) | (ha
wa
hal | r the
B1
B1 | [7] | | | | | | Page 4 | Mark Scheme | Sy. Oper | |--------|---|----------| | | Cambridge O Level – October/November 2014 | 505 | # Section B | 9 | (a) | cha
cha
rate | C1 A1 | [2] | | | | |----|---|--------------------|---|--|----------------|--|--| | | (b) | (a v | B1 | [1] | | | | | | (c) (i) 1. X between t ≥ 0 and t < 10 s 2. Y between t > 20 s and t < 30 s 3. Z between t > 10 s and t < 20 s or between t > 30 s and t < 40 s | | | | | | | | | (ii) 1. two speed values from graph between 15 and 35 s (±1 mm) two corresponding time values from graph between 15 and 35 s | | | | | | | | | | | $(\pm 1 \text{ mm})$ or $(a =)\Delta v/t$ | C1 | | | | | | | | 500 m/s ² | A1
C1 | | | | | | 2. (<i>F</i> =) <i>ma</i> or 8.4 × 500 4200 N | | | | | | | | | | (iii) | 1. arrow labelled F perpendicular to surface of Earth | В1 | | | | | | | ` , | arrow labelled R opposite to direction of travel (by eye) from rock | B1 | | | | | | speed changes or density/pressure of air changes or cross-sectional
area (of rock) changes | | | | | | | | | (iv) it hits the ground/surface of the earth or stops or speed is zero | [Tota | al: 15] | | | | 10 | (a) | 3.0 | $\times 10^8 \mathrm{m/s}$ | [Tota | al: 15]
[1] | | | | 10 | ` , | | | B1 | _ | | | | 10 | ` , | 3.0
(i) | 1. decreases cao | B1 | _ | | | | 10 | ` , | | | B1 | _ | | | | 10 | ` , | (i) | decreases cao no change cao decreases cao | B1
B1
B1
B1 | _ | | | | 10 | ` , | (i) | decreases cao no change cao | B1
B1
B1 | _ | | | | 10 | (b) | (i)
(ii) | decreases cao no change cao decreases cao i correctly marked (to normal) r correctly marked (to normal) | B1
B1
B1
B1
B1 | [1] | | | | 10 | (b) | (i)
(ii) | decreases cao no change cao decreases cao i correctly marked (to normal) | B1
B1
B1
B1 | [1] | | | | 10 | (b) | (i)
(ii) | decreases cao no change cao decreases cao i correctly marked (to normal) r correctly marked (to normal) n or sin i/sin r = n or sin i/sin r = 1.5 | B1
B1
B1
B1
B1
C1 | [1] | | | | 10 | (b) | (i)
(ii) | 1. decreases cao 2. no change cao 3. decreases cao 1. i correctly marked (to normal) 2. r correctly marked (to normal) $\sin i/\sin r = n$ or $\sin i/\sin r = 1.5$ $\sin 89/\sin r = 1.5$ or $\sin 89/1.5$ or $0.67(0.666565)$ 42° or 41.8025° | B1
B1
B1
B1
C1
C1 | [1] | | | | 10 | (b) | (i)
(ii) | 1. decreases cao 2. no change cao 3. decreases cao 1. i correctly marked (to normal) 2. r correctly marked (to normal) $\sin i/\sin r = n$ or $\sin i/\sin r = 1.5$ $\sin 89/\sin r = 1.5$ or $\sin 89/1.5$ or $0.67(0.666565)$ 42° or 41.8025° i equal to/close to 90° $\sin i/\sin 45$ $\sin^{-1}(1/n)/\sin^{-1}(1/1.5)$ and r less than 45° = 1.5 and 41.8° or | B1
B1
B1
B1
B1
C1
C1
A1 | [1] | | | | 10 | (b) | (i)
(ii) | 1. decreases cao 2. no change cao 3. decreases cao 1. <i>i</i> correctly marked (to normal) 2. <i>r</i> correctly marked (to normal) $\sin i/\sin r = n$ or $\sin i/\sin r = 1.5$ $\sin 89/\sin r = 1.5$ or $\sin 89/1.5$ 89/$ | B1
B1
B1
B1
B1
C1
C1
A1 | [1] | | | | Pa | age : | 5 | | | Mar | k Schem | ne | | Sy. 505 | Q D | er | |----|---|---|--|---------|---------------------------|-------------|--------------------|-----------------------|------------------|-----------|--------| | | | Cambridge O Level – October/November 2014 505 | | | | | | OD . | | | | | | (d) | (i) | (sin) $i = 0$ or ray enters directly/ wavefront/light hits surface along normal/perpendicular or all together (sin) $r = 0$ or no refraction all slows down together | | | | | | | B1
B1 | bridge | | | | (ii) |) correct reflection at bottom surface (by eye) second correct reflection at top <u>and</u> no refraction at either point | | | | | | | M1
A1 | [4] | | | | | | | | | | | | | | | 11 | (a) | | same element or same number of protons/atomic number different/particular number of neutrons or nucleons | | | | | | | | [2] | | | (b) | (i) | 38 ca | o | | | | | | B1 | | | | | (ii) | 52 ca | o | | | | | | B1 | [2] | | | (c) $_{39}^{90}(Y)$ or $_{39}^{90}(Y)$ and $_{0}^{0}(\beta)$ $_{39}^{0}(Y)$ and $_{-1}^{0}(\beta)$ | | | | | | | | | | [2] | | | (d) (i) $87/29$ or 3 (half-lives) or $6.0 \times 10^8/8$
7.5×10^7 | | | | | | | | | C1
A1 | | | | | (ii) | | | detection met | hod | | | | B1
B1 | | | | | de | etector | film | (solid-state)
detector | GM-
tube | ionisation chamber | scintillation counter | cloud
chamber | | | | | | de | etection | fogged | count/
reading | count/ | count/
reading | count/
reading | track seen | | | | | no reduction with or (use of) electric/magnetic field or describe paper pattern of track | | | | | | | | M1 | | | | | complete reduction or correct deflection of track in or no other with aluminium/lead electric/magnetic field track | | | | | | | | A1 | | | | | (iii) 1. unpredictable or not be known in advance or no set time between emissi or fluctuates or not fixed or counts obtained varies 2. any two from: direction/in space | | | | | | | | etween emissio | ons
B1 | | | | | | time
which | nucleus | decays | | | | | B2 | [9] | | | | | | | | | | | | [Total: | : 15] |