Centre No.					Pape	r Refer	ence			Surname	Initial(s)
Candidate No.			7	0	8	1	/	0	1	Signature	

Paper Reference(s)

7081/01

London Examinations GCE

Chemistry

Ordinary Level

Paper 1

Tuesday 25 May 2010 – Afternoon

Time: 1 hour 15 minutes

Materials required for examination	Items included with question papers
Nil	Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature. Answer ALL the questions. Write your answers in the spaces provided in this question paper.

Information for Candidates

A Periodic Table is printed on the back cover of this question paper.

Calculators may be used.

The total mark for this paper is 100.

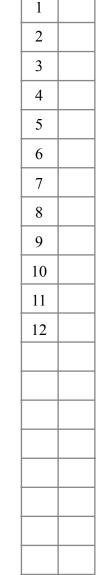
The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 12 questions in this question paper.

There are 16 pages in this question paper.

DATA

One mole of any gas occupies 24 000 cm³ at room temperature and atmospheric pressure. One mole of electrons carries a charge of 96 500 coulombs or 1 faraday.


Advice to Candidates

Write your answers neatly and in good English. In calculations, show **all** the steps in your working.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2010 Edexcel Limited.

Examiner's use only

Team Leader's use only

Turn over

Answer ALL the questions.

Leave blank

1. Complete the table.

Name of compound	Formula of compound	Formula of cation	Formula of anion
calcium chloride	CaCl ₂	Ca ²⁺	Cl ⁻
lead(II) carbonate		Pb ²⁺	
	Fe(OH) ₃	Fe ³⁺	
chromium(III) oxide	Cr ₂ O ₃		

Q1

(Total 6 marks)

A pale yellow non-metallic element. (1) An element that consists of diatomic molecules and is purple in the vapour state. (1) A monatomic gas in Period 5 of the Periodic Table. (1) The product of the reaction between hot iron metal and dry chlorine gas. (1) The least reactive element in Group 2 of the Periodic Table. (1) (Total 5 marks)	(a) Δ nale	ellow non-metallic element	
An element that consists of diatomic molecules and is purple in the vapour state. (1) A monatomic gas in Period 5 of the Periodic Table. (1) The product of the reaction between hot iron metal and dry chlorine gas. (1) The least reactive element in Group 2 of the Periodic Table. (1)	(a) A paie	enow non-metanic element.	
(1) A monatomic gas in Period 5 of the Periodic Table. (1) The product of the reaction between hot iron metal and dry chlorine gas. (1) The least reactive element in Group 2 of the Periodic Table. (1)			(1)
A monatomic gas in Period 5 of the Periodic Table. (1) The product of the reaction between hot iron metal and dry chlorine gas. (1) The least reactive element in Group 2 of the Periodic Table. (1)	(b) An elen	ent that consists of diatomic molecules ar	nd is purple in the vapour state.
(1) The product of the reaction between hot iron metal and dry chlorine gas. (1) (1) The least reactive element in Group 2 of the Periodic Table. (1)			(1)
The product of the reaction between hot iron metal and dry chlorine gas. (1) The least reactive element in Group 2 of the Periodic Table. (1)	(c) A mona	omic gas in Period 5 of the Periodic Table	e.
(1) The least reactive element in Group 2 of the Periodic Table. (1)			(1)
The least reactive element in Group 2 of the Periodic Table. (1)	(d) The pro	luct of the reaction between hot iron meta	al and dry chlorine gas.
(1)			(1)
	(e) The lea	t reactive element in Group 2 of the Perio	odic Table.
(Total 5 marks)			(1)
(2000.0 1000.100)			(Total 5 marks)

				Leave blank
3.	Coı	mplete the following statements by inserting the missing colours.		
	(a)	At room temperature, bromine is a liquid.	(1)	
			(1)	
	(b)	When concentrated nitric acid is added to copper,		
		muogen alomae is evolvea.	(1)	
	(c)	When water is added to anhydrous copper(II) sulphate, the solid		
		turns		
			(1)	
	(d)	When aqueous sodium carbonate is added to aqueous calcium chloride,		
	, ,	a precipitate is formed.		
		a precipitate is formed.	(1)	
	(e)	When damp pieces of red and blue litmus are placed in a gas jar of hydrogen		
	()			
		chloride, one piece changes from to	(1)	Q3
		(Total 5 ma	rks)	

4.	Compl	lete	the	tabl	le
т.	Comp	CiC	uic	lau	U.

Particle	Number of protons	Number of neutrons	Number of electrons
¹⁹ ₉ F			9
$^{80}_{35}{ m Br}^{-}$	35		
	19	20	18

Q4

Leave blank

(Total 7 marks)

(a) electrons in the outer energy level of antimony (atomic number = 51) (b) atoms in one molecule of (CH ₃) ₂ CHCH ₂ CHBr ₂ (c) carbon atoms in one molecule of an alkane that contains ten hydrogen atoms (d) moles of oxygen molecules required to react completely with four moles of hydrogen molecules (1)
(b) atoms in one molecule of (CH ₃) ₂ CHCH ₂ CHBr ₂ (1) (c) carbon atoms in one molecule of an alkane that contains ten hydrogen atoms (1) (d) moles of oxygen molecules required to react completely with four moles of hydrogen molecules (1)
(1) (c) carbon atoms in one molecule of an alkane that contains ten hydrogen atoms (1) (d) moles of oxygen molecules required to react completely with four moles of hydrogen molecules (1)
(c) carbon atoms in one molecule of an alkane that contains ten hydrogen atoms (1) (d) moles of oxygen molecules required to react completely with four moles of hydrogen molecules (1)
(d) moles of oxygen molecules required to react completely with four moles of hydrogen molecules (1)
(d) moles of oxygen molecules required to react completely with four moles of hydrogen molecules (1)
molecules(1)
(e) moles of sodium hydroxide needed to neutralise 500 cm ³ of 0.25 mol dm ⁻³ nitric acid.
(1)
(Total 5 marks)

(a) magnesium + oxygen → magnesium oxide (b) potassium hydroxide + carbon dioxide → potassium carbonate + water (c) aluminium sulphate + sodium hydroxide → aluminium hydroxide + sodium sulphate (d) ethanol + sodium → sodium ethoxide + hydrogen (2) (Total 8 marks)	Wri	te balanced equations for the following reactions.
(b) potassium hydroxide + carbon dioxide → potassium carbonate + water (2) (c) aluminium sulphate + sodium hydroxide → aluminium hydroxide + sodium sulphate (2) (d) ethanol + sodium → sodium ethoxide + hydrogen (2)	(a)	magnesium + oxygen → magnesium oxide
(c) aluminium sulphate + sodium hydroxide → aluminium hydroxide + sodium sulphate (2) (d) ethanol + sodium → sodium ethoxide + hydrogen (2)		(2)
(c) aluminium sulphate + sodium hydroxide → aluminium hydroxide + sodium sulphate (2) (d) ethanol + sodium → sodium ethoxide + hydrogen (2)	(b)	potassium hydroxide + carbon dioxide → potassium carbonate + water
(d) ethanol + sodium \rightarrow sodium ethoxide + hydrogen (2)		(2)
(d) ethanol + sodium → sodium ethoxide + hydrogen (2)	(c)	aluminium sulphate + sodium hydroxide → aluminium hydroxide + sodium sulphate
(2)		(2)
	(d)	ethanol + sodium → sodium ethoxide + hydrogen
(Total 8 marks)		(2)
		(Total 8 marks)

7

Turn over

(a)	State and explain what you would observe when zinc granules are added to a solution of copper(II) sulphate. Write an equation for the reaction, including state symbols.
	Change in appearance of the zinc:
	Change in appearance of the solution:
	(4)
(b)	Equation: (2) State what would be seen when bromine water is added in turn to aqueous sodium chloride and to aqueous sodium iodide. Write an equation for a reaction that occurs.
(b)	Equation: (2) State what would be seen when bromine water is added in turn to aqueous sodium
(b)	Equation: (2) State what would be seen when bromine water is added in turn to aqueous sodium chloride and to aqueous sodium iodide. Write an equation for a reaction that occurs.
(b)	Equation: (2) State what would be seen when bromine water is added in turn to aqueous sodium chloride and to aqueous sodium iodide. Write an equation for a reaction that occurs. Observation with sodium chloride:
(b)	Equation: (2) State what would be seen when bromine water is added in turn to aqueous sodium chloride and to aqueous sodium iodide. Write an equation for a reaction that occurs. Observation with sodium chloride:
(b)	Equation:

3. (a)		scribe how concentrated aqueous ethanol can be manufactured by fermentation of ar and by hydration of ethene.	Leav blan
	(i)	Starting from sugar solution.	
		Equation: $C_6H_{12}O_6 \rightarrow C_2H_5OH +$ (5)	
	(ii)	Starting from ethene and steam.	
		Equation:	
		(4)	
(b)	(i)	Give one environmental advantage of the fermentation method.	
		(1)	
	(ii)	Give two advantages of the method using hydration of ethene.	
		(2)	Q
		(Total 12 marks)	

	mai	has been boiled for several minutes, no reaction occurs.
	(i)	Explain the difference in behaviour of the iron in the two experiments.
		(2)
	(ii)	Give a test and the result to show that the vellow solution formed contains
	(11)	Give a test and the result to show that the yellow solution formed contains iron(III) ions. Write an ionic equation for the reaction that occurs.
		Test:
		Result:
		Equation: (3)
o)	(i)	Explain why an iron nail that has a strip of magnesium ribbon wrapped around it before being placed in a beaker of water does not rust.
		(2)
	(ii)	Give two other ways by which rusting can be prevented.
		(2)
		(Total 9 marks)

•		c can be obtained from its ore by a process which includes electrolysis of aqueous zinc phate using inert electrodes. Zinc is obtained at the cathode and oxygen at the anode.				
	(a)	Con	mplete the following ionic equations for the reactions that occur at the electron	odes.		
		(i)	Reaction at the cathode: $Zn^{2+} + \dots \rightarrow \dots$			
		(ii)	Reaction at the anode: $4OH^ 4e^- \rightarrow \dots + O_2$	(2)		
	(b)	20 f	faradays of electrical charge were passed through the solution.			
		(i)	Calculate the number of moles of zinc formed at the cathode.			
				(2)		
		(ii)	Calculate the mass of zinc formed at the cathode.			
		(iii)	How many moles of oxygen gas were evolved?	(1)		
				(1)		
		(iv)	Calculate the volume of oxygen evolved at room temperature and atmospl pressure.	neric		
				(2)	Q1	
			(Total 8 ma			

1.	(a)	(i)	The rate of the reaction between marble chips and hydrochloric acid can be increased by breaking the chips into smaller pieces. Explain, using the kinetic theory, why this happens.				
			(2)				
		(ii)	State, and explain, one other way by which the rate of this reaction can be increased.				
			(3)				
	(b)	(b) Some chemical reactions reach equilibrium under a given set of conditions. the reaction represented below.					
			$A_2(g) + B_2(g) \Rightarrow 2AB(g) \Delta H$ is negative				
		(i)	State with a reason what effect, if any, an increase in temperature would have on the position of equilibrium.				
			(2)				
		(ii)	State with a reason what effect, if any, an increase in pressure would have on the position of equilibrium.				

(2)

(iii) State with a reason what effect, if any, an incr rate of reaction.	rease in pressure would have on the
	(3)
	(Total 12 marks)

Leave blank

12. Some average bond dissociation energies are given in the table below.

Bond	Average Bond Dissociation Energy / kJ mol ⁻¹			
С—Н	410			
C—C	350			
C—O	360			
C=O	745			
О—Н	465			
0=0	495			
Si—Si	230			
Si—H	318			
Si—O	374			

(a) Use the average bond dissociation energies in the table to calculate the enthalpy of combustion of propane.

(i) Calculate the energy needed to break the bonds in

1 mole of propane:	
- 1 C	
5 moles of oxygen:	
Total energy needed:	
	4)

14

	4 moles of steam:
	Total energy released: (3)
	(iii) Calculate the enthalpy of combustion, ΔH , for the reaction.
	(2)
0)	Carbon and silicon are in the same group of the Periodic Table. Carbon forms compounds in which there are long chains of carbon atoms. Silicon does not form compounds in which there are long chains of silicon atoms. Use the values in the table to suggest an explanation for this difference.
	(2)
	The compound silane, SiH ₄ , spontaneously oxidises in air to form a compound containing Si—O bonds. Use the values in the table to suggest an explanation for this.
c)	
c)	
c)	(2)

	0	Helium 4	Neon Neon 20 20 Af Argon	36 36 36 36 36 36 36 36 36 36 36 36 36 3	Radon 222			
	^		Fluorine 19 Chlorine Chlorine 25 Chlorine	35.3 Bromine 80 53 127	At Astatine 210			
	ဖ		Oxygen 16 Sulphur	Selenium Selenium 79 T9 Tellurium 128	Polonium 210			
	S		Nitrogen 14 15 Phosphorus	Arsenic 75 Sh Antimony 122	Bismuth 209			
	4		Carbon 12 Silicon Silicon 29	Ē	Pb Lead 207			
	ო			31 Ga Gallium 70 70 H9 H9 H15				
111				30 Zinc E5 E5 E5 Cadmium 112				
TABLE				Copper 63.5 47 Ag Silver 108	Au Gold 197			
NODIC				28 Nickel 59 46 Palladium 106	78 Pt 195			
THE PERIODIC TABLE							27 CO Cobalt 59 45 HR Rhodium 103	17 Iridium
≐					OS Osmium 190	à È		
	Group	Hydrogen				Key Atomic number Symbol Name Relative atomic mass		
				Chromium Manganese 55	74 W Tungsten 184			
				Vanadium 51 41 A1 Niobium 193	73 Ta Tantalum 181			
				Ti Titanium 48 40 Zr Zrrconium 91	Titanium 48 40 40 Zirconium 91 72 72 Hff Hafnium 179			
				Scandium 45 Scandium 45 Yttrium 89				
	α		Be Beryllium 9 12 Mg Magnesium	Calcium Ao Strontium 88	56 Ba Barium 137 137 Ra Radium 226			
	-		Lithium 7		CS Caesium 133 87 Fr Francium 223			
		Period	α m	4 ro	9 2			