Centre No.					Pape	r Refer	ence			Surname	Initial(s)
Candidate No.			7	0	8	1	/	0	1	Signature	

7081/01

London Examinations GCE

Chemistry

Ordinary Level

Paper 1

Wednesday 20 May 2009 – Afternoon

Time: 1 hour 15 minutes

Materials required for examination	I
Nil	Ī

Items included with question papers

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature. Answer ALL the questions. Write your answers in the spaces provided in this question paper. Some questions must be answered with a cross in a box (X). If you change your mind about an answer, put a line through the box (\boxtimes) and then mark your new answer with a cross (\boxtimes) .

Information for Candidates

A Periodic Table is printed on the back cover of this question paper.

Calculators may be used.

The total mark for this paper is 100.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 14 questions in this question paper. Any blank pages are indicated.

One mole of any gas occupies 24 000 cm³ at room temperature and atmospheric pressure. One mole of electrons carries a charge of 96 500 coulombs or 1 faraday.

Advice to Candidates

Write your answers neatly and in good English. In calculations, show all the steps in your working.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2009 Edexcel Limited.

 $\stackrel{\text{Printer's Log. No.}}{N31493}A$

Examiner's use only

1

3

W850/U7081/57570 5/5/5/2/

Answer ALL the questions.

Leave blank

1. Complete the table.

Name of compound	Formula of compound	Formula of cation	Formula of anion
calcium bromide	CaBr ₂	Ca ²⁺	Br ⁻
ammonium sulphate			SO ₄ ²⁻
tin(II) nitrate	Sn(NO ₃) ₂		
	Fe ₂ O ₃		O ²⁻
sodium phosphate	Na ₃ PO ₄	Na ⁺	

Q1

(Total 7 marks)

2.		mplete the following sentences by inserting the name or formula of the appropriate ment or compound.	Leave blank
	(a)	When magnesium reacts with, the products	
		are magnesium chloride and	
	(b)	A gas that burns in air to form water as the only product	
		is(1)	
	(c)	When sodium nitrate is heated strongly, gas	
		is evolved. (1)	
	(d)	When copper reacts with nitric acid, the brown	
		gas is evolved. (1)	
	(e)	When sulphur dioxide dissolves in aqueous sodium hydroxide, the products are	
		and water. (1)	Q2
		(Total 6 marks)	

3. The following table shows the properties of five substances labelled $\bf A$ to $\bf E$.

Leave blank

Cubatanaa	Melting	Boili	ng	Elect	rical c	conductivity	Effect of
Substance	point (°C)	point ((°C)	When s	olid	When molter	heating in air
A	-157	-15	2	pooi	ſ	poor	no reaction
В	650	110	5	good	d	good	burns to form a solid oxide
C	765	140	5	pooi	ſ	good	no reaction
D	-130	36		poor	ſ	poor	burns to form two products
E	114	444	4	poor	ſ	poor	burns to form an acidic gas
Put a cro	ss (☒) in the	correct	box to	o indicate	which	substance (A, l	B, C, D or E) could
(a) a me	etal	A	В	\mathbf{C}	D	E	
		×	X	\boxtimes	\boxtimes	\boxtimes	(1)

(b) a non-metal	A	В	C	D	E	
	X	\times	×	\times	\boxtimes	
(c) a noble gas	A	В	C	D	E	
	X	X	×	X	\times	
(d) a hydrocarbon	A	В	C	D	E	
	X	×	\times	×	\bowtie	

(e) an ionic solid A B C D E

(1)

(1)

Q3

(Total 5 marks)

(a)	The relative atomic mass of iodine is
	(1
(b)	The number of electrons in an atom of zinc is
	(1
c)	The number of neutrons in an atom of potassium is
	(1
d)	The number of electrons in the outer shell of an atom of lead is
	(1
e)	The number of electrons in an ion of calcium is
	(1
f)	The electronic configuration of an atom of sulphur is
	(1
	(Total 6 marks

_			Leave blank
5.	Complete the following statements by inserting the missing colours .		
	(a) When magnesium ribbon is burned in air, a	solid is	
	formed.	(1)	
		(1)	
	(b) On heating, iodine sublimes to form a vap	oour. (1)	
	(c) When aqueous ammonia is added to aqueous copper(II) sulphate,		
	a precipitate is formed which dissolves in	excess	
	ammonia to form a solution.	(2)	
	(d) When chlorine is passed into aqueous sodium bromide, the colourles	ss solution	
	turns	(4)	
		(1)	
	(e) When anhydrous cobalt chloride is dissolved in water, a		
	solution is formed.	(1)	
	(f) When carbon dioxide is bubbled through aqueous calcium hydroxide		
		c, u	
	precipitate is formed.	(1)	Q5
		(Total 7 marks)	

		Leave blank
(a)	Balance the equations.	
	(i)NaOH + Al(NO ₃) ₃ \rightarrow Al(OH) ₃ +NaNO ₃ (1)	
	(ii) $2Ca(NO_3)_2 \rightarrow CaO + NO_2 + O_2$ (1)	
(b)	Write a balanced equation for each of the following reactions.	
	(i) The reaction of aluminium with bromine to form aluminium bromide.	
	(2)	
	(ii) The reaction of calcium hydroxide with ammonium chloride to form calcium chloride, ammonia and water.	
	(2)	
(c)	Write the following equation as an ionic equation, showing only the ions involved in the reaction.	
	$Ca(NO_3)_2(aq) + Na_2CO_3(aq) \rightarrow CaCO_3(s) + 2NaNO_3(aq)$	
	(2)	Q6
	(Total 8 marks)	
	(b)	 (i)NaOH + Al(NO₃)₃ → Al(OH)₃ +NaNO₃ (ii) 2Ca(NO₃)₂ →CaO +NO₂ + O₂ (b) Write a balanced equation for each of the following reactions. (i) The reaction of aluminium with bromine to form aluminium bromide. (2) (ii) The reaction of calcium hydroxide with ammonium chloride to form calcium chloride, ammonia and water. (c) Write the following equation as an ionic equation, showing only the ions involved in the reaction. (d) Ca(NO₃)₂(aq) + Na₂CO₃(aq) → CaCO₃(s) + 2NaNO₃(aq) (e) Ca(NO₃)₂(aq) + Na₂CO₃(aq) → CaCO₃(s) + 2NaNO₃(aq)

(a)	Three experiments were set up to investigate the rate of rusting of iron under different conditions. Each involved an iron nail being placed in a test tube of water open to the air.	Leave blank
	Experiment 1: an iron nail only.	
	Experiment 2: an iron nail with magnesium ribbon wrapped around it.	
	Experiment 3: an iron nail with copper wire wrapped around it.	
	(i) Arrange the experiments in order of rate of rusting, starting with the one that will rust fastest.	
	(1)	
	(ii) Give the reason for the slow reaction in the experiment where rusting is the slowest.	
	(2)	

7.

(b)	(i)	Draw a labelled diagram for an experiment to show that an iron nail will not rust in air if there is no water present.	Leave blank
		(2)	
	(ii)	Draw a labelled diagram for an experiment to show that an iron nail will not rust in water if there is no air present.	
		(2)	Q7
		(Total 7 marks)	

Q Identify by name or formula A to D in the following reaction asheme	Leave blank
8. Identify, by name or formula, A to D in the following reaction scheme.	
ammonia + cool, add excess air + steam Compound C	
dissolve in water with excess air present Compound D	
A	
C	
D	Q8
(Total 4 marks)	
9. A white powder was thought to be potassium sulphite.(a) When aqueous hydrochloric acid was added to the powder, a pungent smelling gas was evolved that turned blue litmus red.	
Identify the gas and give a further chemical test that would confirm its identity.	
Identity of gas:	
Test:	
Results: (3)	
(b) Give a test to show that the powder contains potassium ions.	
Test:	
Result:	
(2)	Q9

Leave
blank

10. Use the information in the table to answer the questions below.

Test	Solution of hydrogen chloride in water	Solution of hydrogen chloride in methylbenzene	
Electrical conductivity	good	poor	
Reaction with sodium carbonate	Bubbles of colourless gas evolved	No reaction	

Leave blank

11. An excess of marble chips, CaCO₃, was added to aqueous nitric acid in a conical flask at room temperature. A plug of cotton wool was placed in the neck of the flask and the flask was weighed every minute for six minutes. The results are shown below.

Time/min	0	1	2	3	4	5	6
Loss in mass/g	0.00	0.56	0.87	1.00	1.06	1.08	1.08

The equation for the reaction is

$$CaCO_3(s) + 2HNO_3(aq) \rightarrow Ca(NO_3)_2(aq) + CO_2(g) + H_2O(l)$$

(a) State why the mass of the flask and contents decreased.

- (1)
- (b) Why was a plug of cotton wool used?

 (1)

12

Leave blank

(c) Plot the results on the grid below and draw a line of best fit through the points.

(d) (i) Use the graph to describe how the rate of reaction changes during the experiment.

.....

(ii) Explain in terms of collision theory why the rate changes during the experiment.

(2)

(1)

	(2)
(f)	Calculate the volume of carbon dioxide produced in 1 minute at room temperature and atmospheric pressure.
	(2)
	(Total 12 marks)

				(1)
	plete the tab atom.	le to show the num	bers of protons, neu	trons and electrons in
		protons	neutrons	electrons
	²³⁵ ₉₂ U			
	²³⁸ 92U			
				(3)
(iii) Expla	ain why the t	two atoms have the	same chemical prope	rties.
	•••••			
				(1)
	e of a subst Constant, L		umber of specified p	particles equal to the
Avogadro	Constant, L		umber of specified p	
Avogadro State, in to	Constant, L	ne number of	umber of specified p	
Avogadro State, in to	Constant, L	ne number of	imber of specified p	
Avogadro State, in to	Constant, L	ne number of	umber of specified p	
Avogadro State, in to (i) atoms	Constant, Lerms of L, the s in 20 g of r	ne number of	umber of specified p	particles equal to the
Avogadro State, in to (i) atoms	Constant, Lerms of L, the s in 20 g of r	ne number of neon:	umber of specified p	particles equal to the
Avogadro State, in to (i) atoms (ii) molecular	erms of L, the s in 20 g of r	ne number of neon:		particles equal to the (1)
Avogadro State, in to (i) atoms (ii) molecular	erms of L, the s in 20 g of r	ne number of neon:	umber of specified process of Zn ²⁺ ions during	particles equal to the (1)
Avogadro State, in to (i) atoms (ii) molecular	erms of L, the s in 20 g of r	ne number of neon:		particles equal to the (1)

Leave
11 1

3 (a) Nx	ylon is a polyamide that can be made from the monomers below.	
(a) 11y		
	$HOOC(CH_2)_4COOH$ $H_2N(CH_2)_6NH_2$	
(i)	Complete the central section to show the arrangement of all the bonds in missing part of the polymer chain of nylon.	the
	—С—(CH ₂) ₄ ——(CH ₂) ₆ —N— О	
		(1)
(ii)) What is the name given to this type of polymerisation?	
		(1)
(b) Ch	aloroethene, CH ₂ —CHCl, can be polymerised to form poly(chloroethene).	
(i)	Draw the displayed formula of chloroethene.	
(ii)) Draw the displayed formula of the repeating unit in poly(chloroethene).	(1)
(iii	i) What is the name given to this type of polymerisation?	(1)
		····· (1)

(iv)	Use chloroethene and poly(chloroethene) to explain the difference between the terms <i>saturated</i> and <i>unsaturated</i> . Chloroethene:	blank
	Poly(chloroethene):	
(v)	Draw the displayed formula for the product of the reaction between chloroethene and chlorine.	
	(1) (Total 8 marks)	Q13
	(Town 6 Interns)	

14. (a)	Give two differences in physical properties between a metal and a non-metal.
	Difference 1:
	Difference 2:
	(2)
(b)	Write an equation for and name the product of the reaction that takes place when water is added to
	(i) calcium oxide
	Equation
	Name of product(2)
	(ii) sulphur dioxide
	Equation
	Name of product(2)

Leave blank

(-) (-)	1	Leave blank
	Draw the full electron arrangement of the calcium ion and the oxide ion present in calcium oxide. Include the charges on the ions.	
(ii	calcium ion oxide ion (4) Explain what is meant by an ionic bond .	
	(1) (Total 11 marks)	Q14
	TOTAL FOR PAPER: 100 MARKS	
	END	

	0	2 Helium 4	Neon 20 20 Argon	Krypton 84 84 84 84 84 84 84 84 84 84 84 84 84	Radon Radon 222	
	7		Fluorine 19 Chlorine	35.5 35. 35. Bromine 80 53 1	85 At Astatine 210	
	9		Oxygen 16 Sulphur	Selenium 79 79 Tellurium 100 100 100 100 100 100 100 100 100 10	Polonium 210	
	വ		Nitrogen 14 15 Phosphorus	Arsenic 75 S1	Bismuth 209	
	4			28 32 Germanium 73 73 Sn Tin		
	ო			Gallium 70 49 Hodium Indium		
ш				30 Znc Zinc 65 65 Cd Cadmium	HG Mercury 201	
THE PERIODIC TABLE				Copper 63.5	Au Au Gold 197	
SIODIC				Nickel S9 S9 Palladium	Pt Patinum 195	
H				Cobalt 59 A5 Phodium	77	
=				26 Fe Iron 56 AUThenium		nber omic
	Group	Hydrogen		Cr Mn Chromium Manganese 52 43 42 43 MO Molybdenum Technetium	Re Rhenium 186	Key Atomic number Symbol Name Relative atomic mass
				Cr Chromium 52 42 Molybdenum	74 W W Tungsten 184	
				Vanadium S1 Niobium	73 73 Tantalum 181	
				Tianium 48 40 Zreonium 27		
				Scandium 45	EXPERIENCE TO THE PROPERTY OF	
	Ø		Beryllium 9 9 12 Mg	Calcium 40 Strontium Strontium	Barium 137 137 88 Radium 226	
	-		Lithium 7 7 11 Na Sodium	_	CS Caesium 133 87 Francium 223	
		Period 1	a w	4 დ	9 1	