

education

Department: Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATION - 2006

PHYSICAL SCIENCE PAPER 2 CHEMISTRY

STANDARD GRADE

OCTOBER/NOVEMBER 2006

304-2/2E

PHYSICAL SCIENCE SG: Paper 2 Chemistry

MARKS: 150

TIME: 2 hours

This question paper consists of 13 pages, a data sheet of 4 pages and 1 multiplechoice answer sheet.

GENERAL INSTRUCTIONS

- 1. Answer ALL questions.
- 2. Non-programmable calculators may be used.
- 3. Appropriate mathematical instruments may be used.
- 4. A Data Sheet is provided for your use.

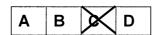
QUESTION 1

INSTRUCTIONS

- 1. Answer this question on the specially printed ANSWER SHEET. (Write your EXAMINATION NUMBER in the appropriate space.) [Note: This instruction may vary, depending on the type of answer book used by the province.]
- 2. Use a PENCIL when making the necessary cross on your answer sheet.
- 3. In the case of a wrong answer, erase the pencil marks completely.
- 4. Do not make any other marks on your answer sheet. Any calculations or writing that may be necessary when answering this question should be done in the answer book and must be clearly deleted by means of a diagonal line drawn across the page.
 - PLACE THE COMPLETED ANSWER SHEET INSIDE THE FRONT COVER OF YOUR ANSWER BOOK. [Note: This instruction may vary, depending on the type of answer book used by the province.]
- 5. Four possible answers, indicated by A, B, C and D, are supplied with each question. Choose only that answer, which in your opinion, is the correct or best one and mark the appropriate block on your answer sheet.
- 6. Each question has only one correct answer.
- 7. If more than one block is marked, no marks will be awarded for that answer.

EXAMPLE

QUESTION: The symbol for the unit of time is ...

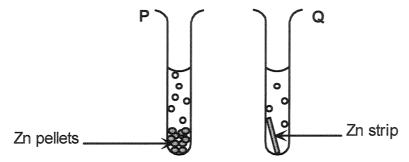

A t.

B h.

C s.

D m.

ANSWER:

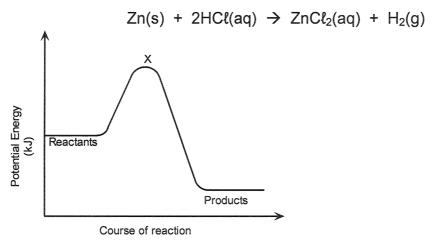

1.1	Which ONE of the following factors should be kept constant when verifying Boyle's law?											
	Α	Density										
	В	Volume										
	С	Pressure										
	D	Temperature	(3)									
1.2		intermolecular forces between the particles of iodine crystals ($I_2(s)$) can tbe classified as										
	Α	Van der Waals forces.										
	В	hydrogen bonds.										
	С	ion-dipole forces.										
	D	ionic-bond forces.	(3)									
1.3	Manganese(IV) oxide (MnO_2) is used in the laboratory preparation of chlorine gas. In the reaction MnO_2 acts as											
	Α	a catalyst.										
	В	an oxidising agent.										
	С	a dehydrating agent.										
	D	a bleaching agent.	(3)									
1.4	In in	dustry nitrogen is obtained through the										
	Α	Ostwald process.										
	В	electrolysis of sodium nitrate.										
	С	liquefaction and fractional distillation of air.										
	D	liquefaction and fractional distillation of atmospheric moisture.	(3)									
1.5	In th	ne reaction of sulphur dioxide gas with water,										
	Α	the water is reduced.										
	В	sulphurous acid is formed.										
	С	sulphur is formed.										
	D	the sulphur dioxide is oxidised.	(3)									

Copyright reserved

GAUTENG

Please turn over

Two learners put 5 g Zn pellets in test tube **P** and a 5 g Zn strip in test tube **Q** respectively. (See diagram.) They now simultaneously add 20 cm³ of a 1 mol.dm⁻³ HCl solution at 25 °C into each test tube.


The difference in the rate at which hydrogen is produced in test tubes P and Q is due to the ...

- A mass of the Zn metal used.
- B size of the Zn metal used.
- C temperature of the HCl solution.
- D concentration of the HCl used.

(3)

(3)

1.7 Consider the potential-energy diagram below for the following reaction:

Which ONE of the statements below is CORRECT?

- A The reaction is endothermic.
- B Heating the zinc will decrease the heat of reaction (ΔH).
- C The activation energy of the reaction can be lowered by using a higher concentration of HCl.
- D The activated complex will form at position X on the graph.

1.8 An 'ice-pack', containing ammonium chloride (NH₄Cl) and water, is used in hospitals to relieve swelling caused by some accidents. The ice pack cools the affected area.

The ice pack cools down because of a/(n) ... reaction.

- A endothermic
- B neutralisation
- C exothermic
- D redox (3)
- 1. 9 Consider the half-reactions below:

$$O_2(g) + 2H^+(aq) + 2e^- \rightarrow H_2O_2(aq)$$

 $SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \rightarrow SO_2(aq) + 2H_2O$
 $Pb^{2+}(aq) + 2e^- \rightarrow Pb(s)$
 $Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$

The strongest oxidising agent is ... (Use the Table of Standard Reduction Potentials.)

- A O₂
- B SO_4^2
- C Pb²⁺
- $D Fe^{2+}$ (3)
- 1.10 Consider the equation:

$$NH_3(aq) + H_2O(\ell) \Rightarrow NH_4^+(aq) + OH^-(aq)$$

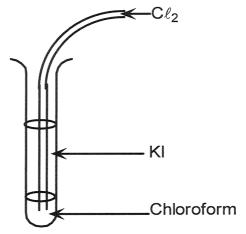
The acids in the reaction are ...

- A NH₃ and H₂O
- B H₂O and NH₄⁺
- C NH₃ and OH⁻
- D NH_{Δ}^{+} and OH^{-} (3)
- 1.11 A learner spilled some sulphuric acid on the floor. She wanted to add a substance which would neutralise the acid without itself doing further damage. Which ONE of the following substances would be the most suitable?

	Substance	pН
Α	Vinegar	4
В	Lemon juice	5
С	Sodium bicarbonate	8
D	Sodium hydroxide	13

(3)

1.12 The net reaction occurring in a standard Zn-Cu electrochemical cell is ...


A
$$Cu^{2+}(aq) + Zn(s) \rightarrow Zn^{2+}(aq) + Cu(s)$$

B
$$Zn^{2+}(aq) + Cu^{2+}(aq) \rightarrow Zn(s) + Cu(s)$$

C
$$Zn(s) + Cu(s) \rightarrow Zn^{2+}(aq) + Cu^{2+}(aq)$$

D
$$Cu(s) + Zn^{2+}(aq) \rightarrow Cu^{2+}(aq) + Zn(s)$$
 (3)

1.13 Chloroform is added to a colourless solution of potassium iodide (KI) in a test tube and then chlorine gas (Cl₂) is bubbled through the solution. The chloroform layer in the test tube turns purple. Which ONE of the following statements is CORRECT?

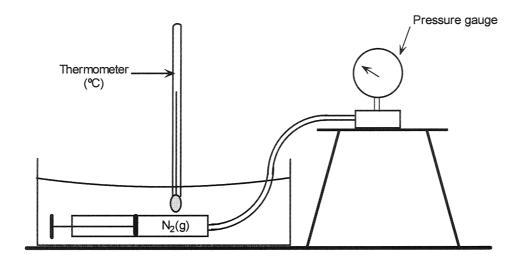
- A The chloroform oxidizes the iodide ions.
- B The Cl_2 is a reducing agent.
- C The iodide ions form a purple complex with chloroform.
- D The formed iodine (I_2) is more soluble in chloroform than in water. (3)
- 1.14 Which ONE of the following formulae represents an alkane?
 - A C_2H_2
 - B C₃H₄
 - C C_3H_6
 - $D C_3H_8$ (3)
- 1.15 An organic compound has the structural formula shown below:

$$H - C = C - C - H$$
 $CH_3 H$

The correct systematic (IUPAC) name for the compound is ...

- A but-1-ene.
- B but-2-ene.
- C methylpropene.
- D methylpropane.

(3) **[45]**


ANSWER QUESTIONS 2 - 9 IN YOUR ANSWER BOOK.

INSTRUCTIONS

- 1. Start each question on a new page in your answer book.
- 2. Leave one line between sub-sections, for example between QUESTIONS 2.1 and 2.2.
- 3. Give all formulae used and show all your workings (this includes substitutions).
- 4. Number your answers in the same way as the questions are numbered.

QUESTION 2 (Start on a new page)

2.1 A fixed mass of pure nitrogen gas $(N_2(g))$ is trapped in a gas syringe. The syringe is connected to a pressure gauge which measures the gas pressure. The syringe is then placed in a water bath as shown in the diagram. After a few minutes the temperature of the gas, its volume and pressure are measured. The experiment is repeated with different volumes of gas.

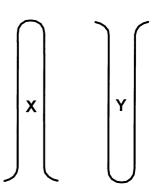
The results are tabulated as follows:

	Volume	Temperature	Pressure
	(cm³)	(°C)	(kPa)
1	40	11,9	96
2	32	12,1	120
3	24	12,1	156

Use the table to answer the following questions:

2.1.1 ONE of the pressure readings is incorrect. Perform calculations to determine the incorrect reading. (6)

- 2.1.2 Calculate the correct pressure value for the incorrect reading in QUESTION 2.1.1.
- (2)
- This experiment is repeated at a temperature of 25 °C. How will 2.1.3 the value of **pV** for the enclosed gas change? Answer only: INCREASES or DECREASES or STAYS THE SAME.
- (2)
- Your science teacher instructed you to prepare a 0,1 mol.dm⁻³ standard 2.2 solution of silver nitrate (AqNO₃).
 - 2.2.1 What is meant by the term **standard solution**?


(2)

2.2.2 Calculate the mass of AgNO₃ crystals required to prepare 100 cm³ of a solution with a concentration of 0,1 mol.dm⁻³.

(4) [16]

QUESTION 3 (Start on a new page)

3.1 Two test tubes X and Y are each filled with a different gas and then clamped in the positions as shown in the diagram. Tests are then performed to identify the gas in each tube.

3.1.1 How does the density of the gas in **X** compare with that in **Y**? (2)

When concentrated hydrochloric acid is brought near the mouth of test tube X white fumes are observed.

3.1.2 Write down the name of the gas in X. (2)

3.1.3 Write down the formula for the white fumes.

(2)

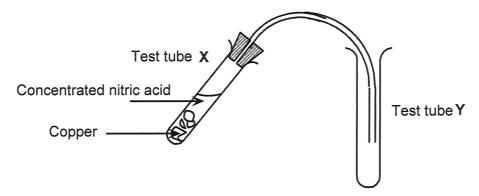
Sulphur dioxide ($SO_2(g)$) is added to the gas in **Y** by means of a gas syringe and the test tube is closed off with a stopper. A yellow precipitate forms in the test tube.

3.1.4 Write down the formula for the gas that was originally in test tube Y.

(2)

Write down the oxidation half-reaction for the reaction in test 3.1.5 tube Y by making use of the Table of Standard Reduction Potentials.

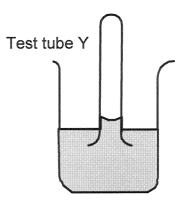
(2)



- 3.2 Hydrogen chloride gas is prepared in the laboratory.
 - 3.2.1 Write down a balanced equation for the preparation of hydrogen chloride. (3)
 - 3.2.2 Write down ONE reason why the gas is collected by upward displacement of air. (2)
 - 3.2.3 HCl gas is bubbled through water. Write down a balanced equation to show the reaction that occurs in water. (3)

 [18]

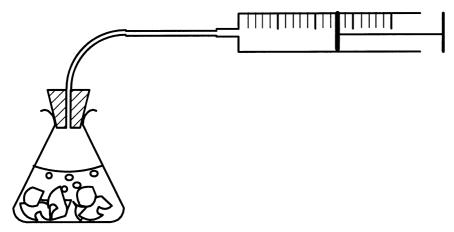
QUESTION 4 (Start on a new page)


Two learners investigate the reaction between copper turnings and concentrated nitric acid using the apparatus shown below.

- 4.1 What will they observe in test tube **Y**? (2)
- Write down the colour of the solution in test tube **X** after the reaction has taken place. (2)
- Write down the formula of the ion that is responsible for the colour of the solution. (2)
- 4.4 Write down the formula of the oxidising agent in this reaction. (2)

The learners place the mouth of test tube Y below the surface of the cold water in a beaker, as indicated in the diagram.

They observe that the water moves slightly upwards into the test tube.


- 4.5 Why does the water rise in the test tube?
- 4.6 Is the solution in the beaker now neutral, acidic or basic?

(2)

QUESTION 5 (Start on a new page)

A few marble chips (CaCO₃) were placed in a conical flask. The chips were covered with a 2 mol.dm⁻³ solution of HCl at 20 °C. The volume of the gas produced was measured using a graduated gas syringe at 30 second intervals.

The results were recorded in the table below.

Time (s)	0	30	60	90	120	150	180
Volume (cm ³)	0	60	150	210	224	224	224

5.1	Write down a balanced equation for the reaction between calcium carbonate and hydrochloric acid. (3)									
5.2	(Choose	which ONE of the following time intervals was the reaction the quickest? e from: 0 - 30 seconds; 30 - 60 seconds, 60 - 90 seconds, 0 seconds.)	(2)							
5.3	At what time did the reaction reach completion? (
5.4	What is the maximum volume of the gas that was delivered? (
5.5	This experiment is repeated using the same concentration and volume of acid but at 30 °C. Predict what will happen to the following: (Choose from: INCREASES, DECREASES or STAYS THE SAME.)									
	5.5.1	The rate at which CO ₂ is produced	(2)							
	5.5.2	The maximum volume of CO ₂ produced	(2) [13]							

QUESTION 6 (Start on a new page)

Nitrogen dioxide gas ($NO_2(g)$) and sulphur dioxide gas ($SO_2(g)$) are allowed to react in a closed container. Equilibrium is reached at 700 °C. The equation for the reaction is:

$$NO_2(g) + SO_2(g) \Rightarrow SO_3(g) + NO(g)$$

6.1 State Le Chatelier's Principle.

(3)

6.2 How will the amount of SO₃(g) at equilibrium be affected by each of the changes below?

(Write down only: INCREASES, DECREASES or STAYS THE SAME.)

- 6.2.1 $0.5 \text{ mol of } NO_2(g) \text{ is added to the equilibrium mixture.}$ (2)
- 6.2.2 A catalyst is added. (2)
- 6.2.3 The pressure in the container is increased by decreasing the volume.

(2) **[9]**

QUESTION 7 (Start on a new page)

A learner is provided with 50 cm³ of dilute hydrochloric acid with a concentration of 0.35 mol.dm⁻³.

7.1 What is meant by a **dilute acid solution**?

(2)

7.2 The reaction between hydrochloric acid and potassium hydroxide is given by the following balanced equation:

$$HCl(aq) + KOH(aq) \rightarrow KCl(aq) + H_2O(l)$$

7.2.1 Consider the following indicators:

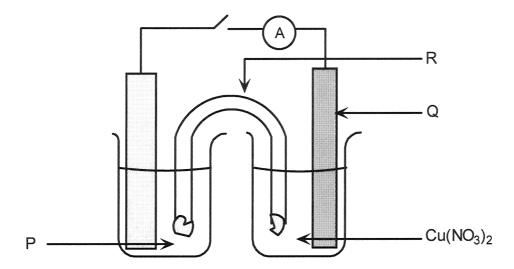
Indicator	pH range
Methyl orange	3,1 – 4,4
Phenol red	6,8 – 8,4
Alizarin yellow	10,1 – 12,0

Which indicator is the most suitable for use in this reaction?

- 7.2.2 Give a reason for your choice in QUESTION 7.2.1. (2)
- 7.2.3 Calculate the number of moles of hydrogen ions present in the hydrochloric acid solution. (3)
- 7.2.4 If the 50cm³ hydrochloric acid is neutralised by 70cm³ potassium hydroxide solution, calculate the concentration of the potassium hydroxide solution.

(4)

(2)


[13]

QUESTION 8 (Start on a new page)

When a zinc strip is placed in a copper(II) nitrate solution, the strip becomes coated with copper.

- 8.1 Write down the oxidation half-reaction for the reaction that takes place. (2)
- 8.2 A standard electrochemical cell is set up using the zinc strip and a 1 mol.dm⁻³ copper(II) nitrate solution. See the diagram below.

Write down the chemical formula/symbol for each of the following:

- 8.2.1 The solution labelled P (2)
- 8.2.2 The electrode labelled Q (2)
- 8.2.3 The solution found in R (2)
- 8.3 If the cell delivers current for some time, what will happen to each of the following?

(Write down only INCREASES, DECREASES or STAYS THE SAME.)

- 8.3.1 The mass of the zinc strip (2)
- 8.3.2 The concentration of solution P (2)
- 8.4 In which direction will the positive ions move in the salt bridge?

 (Choose from: Towards electrode Q or towards the zinc electrode)

 (1)

[13]

QUESTION 9 (Start on a new page)

- 9.1 Write down the functional group for each of the following organic compounds.
 - 9.1.1 Carboxylic acids (2)
 - 9.1.2 Alkynes (2)
- 9.2 Propene gas is bubbled through a **small quantity** of liquid bromine in a test tube. The formula for propene is as shown:

$$CH_3$$

- 9.2.1 What will be observed in the test tube? (2)
- 9.2.2 Using structural formulae for the organic compounds, write down an equation for the reaction that takes place. (4)
- 9.2.3 Write down the IUPAC name for the product of this reaction. (2) [12]

TOTAL: 150

DEPARTMENT OF EDUCATION DEPARTMENT VAN ONDERWYS

SENIOR CERTIFICATE EXAMINATION SENIORSERTIFIKAAT-EKSAMEN

DATA FOR PHYSICAL SCIENCE PAPER 2 (CHEMISTRY)

GEGEWENS VIR NATUUR- EN SKEIKUNDE VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS

TABEL 1: FISIESE KONSTANTE

Avogadro's constant Avogadro-konstante	N_A or/of L	6,02 x 10 ²³ mol ⁻¹
Molar gas constant Molêre gaskonstante	R	8,31 J.K ⁻¹ .mol ⁻¹
Standard pressure Standaarddruk	$ ho^{ heta}$	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V_m	22,4 dm ³ .mol ⁻¹
Standard temperature Standaardtemperatuur	$T^{ heta}$	273 K

TABLE 2: FORMULAE

TABEL 2: FORMULES

$$\frac{p_{I}V_{I}}{T_{I}} = \frac{p_{2}V_{2}}{T_{2}}$$

$$\frac{c_{a}V_{a}}{c_{b}V_{b}} = \frac{n_{a}}{n_{b}}$$

$$pV = nRT$$

$$K_{w} = [H^{+}][OH^{-}] = 10^{-14} \text{ at by/ } 298 \text{ K}$$

$$n = \frac{m}{M}$$

$$pH = -\log[H^{+}]$$

$$c = \frac{n}{V}$$

$$E^{\theta}_{cell} = E^{\theta}_{oxidising agent} - E^{\theta}_{reducing agent}$$

$$E^{\theta}_{sel} = E^{\theta}_{oksideermiddel} - E^{\theta}_{reduseermiddel}$$

$$E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode}$$

$$E^{\theta}_{sel} = E^{\theta}_{katode} - E^{\theta}_{anode}$$

TABLE 3: THE PERIODIC TABLE OF ELEMENTS

TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

																		,					
0	2 He	10	Ne	20	2	Ar.	40	36	χ	84	54	Xe	131	98	R			71	Γn	175	103	Ľ	
	=	6	Щ,	419	17	ည်	ო35,5	35	»Br	مي 80	53	_ -	م127	85	ه At	'ፘ		2	Ϋ́	173	102	° N	
	5	æ	0,	۳16	16	ဟ ဗု	N32	34	⁴Se	79 گ	52	_Te	%128	84	Po	۲'		69	H	169	101	Md	
	>	7	Z ₀ '	α14	15	٦,	N31	33	As	م ُ7 75	51	qS ₆	-122 ح	83	ig 6	-ي205		89	山	167	100	FB	
	≥	9	ပ္ခ	N12	4	الا	~28	32	«Ge	- 73	20	»Sn	٠,119	82	«Pb	+-207		29	9 H	165	66	Es	
	=	5	m ₀ '	7	. 5	, Ag	~27	31	e Ga	- 20ي	49	드	- ب115	81	»T&	-204		99	D	163	86	Ç	
								30	"Zn	ب ₆₅	48	PS ₂	√,112	80	Нg	201		65	4 P	159	26	BK	
									ၣဘိ									64	G q	157	96	CH	
						\sim			Ä 8									63	Ш	152	92	Am	
			Symbol	looqui		(pproximately)	nein)		ဝိ									62	Sm	150	94	Pu	
TEL)er		S	S)		(approx <i>a (hena</i>	a (pena		8 Te									61	Pm		93	Q Z	
KEY/SLEUTEL	Atomic numbe⊦ Atoomgetal ↓	29 → OCu + 63.5	63,5 +	—	Relative atomic mass (a Relatiewe atoommassa	IIIIII	22	uW ⁹		43	J D F		75		186		09	Š	144	92	-	238	
KEY	Atom Atoor		1		•	atomic	מנסס	24		- 52	42	8 Мо		74	>	184		29	P	141	91	Ра	
			ivity –	IMILEIL	;	Relative R <i>elatie</i> v	Veladici	23		ت51	41	Q Q	92	73	La	181		28	Ce	140	06	드	232
			Electronegativity	гіеки опедан и нен	•			22	Ë		40	⁴ Zr	- 16-	72	# ₉	ر 179							
			Electi	DIENE				21	သင္တင		39	<u>_</u>		22	Ľ	139	68	Ac					
	=	4	e, Be	61	17	S	٣24	70			38	Sr		26	Ba	0137	88	,9 Ra	0770				
_	- I,¿	3	٦°,			8 8 8 8		19			37	«Rb		22		o133	87	<u>د</u> ۲(

Please turn over

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDARD REDUKSIEPOTENSIALE

Half-reaction/F	lalfreaksie		E° /volt
F ₂	+ 2e ⁻ ≠	2F ⁻	+2,87
$H_2O_2 + 2H^+$		2H₂O	+1,77
$MnO_4^- + 8H^+$		Mn ²⁺ + 4H ₂ O	+1,51
Au ³⁺	+ 3e ⁻ ≠	Au	+1,42
Cl ₂	+ 2e⁻ ⇒	2Cℓ¯	+1,36
Cr ₂ O ₇ ²⁻ + 14H			+1,33
$O_2 + 4H^+$. + 4e⁻ ⊭	2 H ₂ O	+1,23
$MnO_2 + 4H^+$		$Mn^{2+} + 2H_2O$	+1,21
Pt ²⁺	+ 2e ⁻ ≠	Pt	+1,20
Br ₂	+ 2e⁻ ⇒		+1,09
$NO_3^- + 4H^+$	+ 3e =		+0,96
Ag [†]	+ e =	Ag	+0,80
100°	+ e⁻ ≠	$NO_2 + H_2O$	+0,80
Hg ²⁺	+ 2e ⁻ ≠	Hg	+0,79
Fe ³⁺	+ e =	Fe ²⁺	+0,77
$O_2 + 2H^{\dagger}$	+ 2e =	H_2O_2	+0,68
	+ 2e =	21 ⁻	+0,54
SO ₂ + 4H ⁺			+0,45
$2H_2O + O_2$	+ 4e =	40H	+0,40
Cu ²⁺	+ 2e ≠	Cu	+0,34
SO ₄ ²⁻ + 4H ⁺	+ 2e =		+0,17
Cu ²⁺	+ e =	Cu [†]	+0,16
Sn ⁴⁺	+ 2e	Sn ²⁺	+0,15
S + 2H ⁺	+ 2e =	H₂S	+0,14
2H ⁺	+ 2e =	H ₂	0,00
Fe ³⁺	+ 3e ⁻ ≠	Fe	-0,04
Pb ²⁺	+ 2e⁻ ≠	Pb	-0,13
Sn ²⁺	+ 2e ⁻ ≠	Sn	-0,14
Ni ²⁺	+ 2e ⁻ ≠	Ni	-0,25
Co ²⁺	+ 2e ÷	Co	-0,28
Cd ²⁺	+ 2e ≠	Cd	-0,40
l Fe²⁺	+ 2e =	Fe	-0,44
Cr ³⁺	+ 3e ≠	Cr	-0,74
Zn ²⁺	+ 2e ≠	Zn	-0,76
2H ₂ O	+ 2e ÷	H ₂ + 20H ⁻	-0,83
l Mn ²⁺	+ 2e ≠	Mn	-1,18
Al ³⁺	+ 3e ⁻ ≠	Αℓ	-1,66
Mg ²⁺	+ 2e =	Mg	-2,37
l Ma [⁺]	+ e ≠	Na	-2,71
Ca ²⁺	+ 2e ≠	Ca	-2,87
Sr ²⁺	+ 2e ≠	Sr	-2,89
Ba ²⁺	+ 2e ≠	Ba	-2,90
Cs ⁺	+ e =	Cs	-2,92
K [†]	+ e⁻ ≠	K	-2,93
Li ⁺	+ e⁻ ≠	Li	-3,05

Increasing reducing ability / Toenemende reduseervermoë

E° /volt

-3,05

-2,93

-2,92

-2,90

Li⁺

 K^{+}

Cs⁺

Ba²⁺

Li

Κ

Cs

Ba

Increasing oxidising ability / Toenemende oksideervermoë

Half-reaction / Halfreaksie

+ e⁻

e

e⁻

2e⁻ ≠

T 20 ≠	Da	-2,90
+ 2e ⁻ ≠		-2,89
+ 2e ⁻ ≠	Ca	-2,87
+ 6 ₋ ≠	Na	-2,71
+ 2e ⁻ ≠	Mg	-2,37
+ 3e ⁻ ≠	Αℓ	-1,66
+ 2e⁻ ≠	Mn	-1,18
+ 2e ⁻ ≠	$H_2 + 2OH^{-}$	-0,83
+ 2e ⁻ ≠	Zn	-0,76
+ 3e =	Cr	-0,74
+ 2e⁻ ⊭	Fe	-0,44
+ 2e ⁻ ≠	Cd	-0,40
+ 2e ⁻ ≠	Co	-0,28
+ 2e ⁻ ≠	Ni	-0,25
+ 2e ⁻ ≠	Sn	-0,14
+ 2e ⁻ ≠	Pb	-0,13
+ 3e ⁻ ≠	Fe	-0,04
+ 2e ⁻ ⇒	H_2	0,00
+ 2e ⁻ ≠	H₂S	+0,14
+ 2e ⁻ ≠		+0,15
	Cu⁺	+0,16
	$SO_2 + 2H_2O$	+0,17
		+0,34
		+0,40
		+0,45
	21 ⁻	+0,54
	H_2O_2	+0,68
	Fe ²⁺	+0,77
	Hg	+0,79
	$NO_2 + H_2O$	+0,80
	Ag	+0,80
		+0,96
+ 2e⁻ ≠	2Br ⁻	+1,09
+ 2e ⁻ ≠	Pt	+1,20
	_	+1,21
		+1,23
		+1,33
		+1,36
+ 3e ⁻ ≠	Au	+1,42
	+ + + + + + + + + + + + + + + + + + +	+ 2e = Sr + 2e = Ca + e = Na + 3e = Al + 2e = Mg + 3e = Al + 2e = Mn + 2e = H ₂ + 2OH = Al + 2e = Cr + 2e = Cd + 2e = Cd + 2e = Cd + 2e = Sn + 2e = Ni + 2e = Pb + 3e = Fe + 2e = H ₂ + 2e = H ₂ S + 2e = Sn ²⁺ + e = Cu ⁺ + 2e = AOH = AO

+ 5e⁻ ≠

+ 2e⁻ ≠

+ 2e⁻ ≠

 $MnO_4^- + 8H^+$

 $H_2O_2 + 2H^{\dagger}$

 F_2

2F

 $2H_2O$

 $Mn^{2+} + 4H_2O$

+1,51

+1,77

+2,87

ANSWER SHEET ANTWOORDBLAD

PHYSICAL SCIENCE SG (SECOND PAPER)/NATUUR- EN SKEIKUNDE SG (TWEEDE VRAESTEL)

	Examination number Eksamennommer															
		Г	DEPA								•					
	SENIOR CER										•	4 <i>AT</i> -	-EKS	AME	N	
	PHYSICAL SC NATUUR- EN SKE	IENCE EIKUNI	STAN DE ST	NDA ANL	RD (GRA RDG	DE :	SEC 4 <i>D</i>	CON Twe	D P	APE E VI	R (C R <i>AE</i>	STE	MIST <i>L (CH</i>	RY) HEM	IE)
1.1	АВ	С	D													
1.2	АВ	С	D													
1.3	АВ	С	D													
1.4	АВ	С	D													
1.5	АВ	С	D													
1.6	АВ	С	D													
1.7	АВ	С	D]												
1.8	АВ	С	D													
1.9	АВ	С	D					- 11		e use						1
1.10	АВ	С	D					F				an di	ie nas	siener		
1.11	АВ	С	D							obta beha		:				
1.12	АВ	С	D					ir	/larke nitials	;						
1.13	АВ	С	D]				s	e pai	raaf						
1.14	АВ	С	D]				n N	larke umbe lasie	er ner						
1.15	АВ	С	D]				S	e 1101	mmer ——						

