

SENIOR CERTIFICATE EXAMINATION - 2006

MATHEMATICS PAPER 2 GEOMETRY

STANDARD GRADE

OCTOBER/NOVEMBER 2006

301-2/2E

MATHEMATICS SG: Paper 2

MARKS: 150

TIME: 3 hours

301 2 2E SG

This question paper consists of 11 pages, a formula sheet and 5 diagram sheets.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions:

- 1. This question paper consists of 9 questions, a formula sheet and 5 diagram sheets.
- 2. Use the formula sheet to answer this question paper.
- 3. Detach the diagram sheets from the question paper and place them inside your ANSWER BOOK.
- 4. The diagrams are not drawn to scale.
- 5. Answer ALL the questions.
- 6. Number ALL the answers correctly and clearly.
- 7. ALL the necessary calculations must be shown.
- 8. Non-programmable calculators may be used, unless otherwise stated.
- 9. The number of decimal digits to which answers must be rounded off will be stated in the question where necessary.

Copyright reserved GAUTENG Please turn over

ANALYTICAL GEOMETRY

NOTE: - USE ANALYTICAL METHODS IN THIS SECTION.

CONSTRUCTION AND MEASUREMENT METHODS MAY NOT BE USED.

QUESTION 1

In the diagram alongside, A(2; 1),

C(-6;-3) and B are the

vertices of \triangle ABC.

D (-5; 2) is the midpoint of BC.

Straight line BC makes an

angle θ with the x-axis.

- 1.1 Calculate the length of AC, without using a calculator. (3)
- 1.2 Determine:

1.2.1	The gradient of DC	(3)
1.4.1	The gradient of De	(5)

1.2.2 The size of
$$\theta$$
, rounded off to ONE decimal digit (2)

1.2.3 The value of k if D, C and
$$E(-3; k)$$
 are collinear (4)

1.3 Prove that the equation of the locus of point
$$P(x; y)$$
, which is equidistant from points A and C, is given by $2x + y + 5 = 0$ (6)

1.3.2 Determine whether point
$$(1; -3)$$
 lies on the straight line $2x + y + 5 = 0$ (3)

[25]

QUESTION 2

In the diagram alongside, $A(\sqrt{12}; 2)$

is a point on the circle

with centre O(0;0).

The circle cuts the x-axis and y-axis

at P and T respectively.

Straight line RO intersects

the circle at R.

RO || TP

- 2.1 Show that the equation of the circle is given by $x^2 + y^2 = 16$ (2)
- 2.2 Write down the co-ordinates of P and T. (4)
- 2.3 Hence, write down the equation of the tangent to the circle at T. (2)
- 2.4 Determine:
 - 2.4.1 The gradient of RO (3)
 - 2.4.2 The equation of RO (2)

TRIGONOMETRY

QUESTION 3

3.1 If $\hat{A} = 121^{\circ}$ and $\hat{B} = 61^{\circ}$, calculate the values of the following (rounded off to TWO decimal digits):

$$3.1.1 \qquad \operatorname{cosec} A - \tan B \tag{2}$$

3.1.2
$$\cos^2(A + 2B)$$
 (2)

3.2 If $12 \csc \theta = 13$ and $\theta \in [90^\circ; 270^\circ]$, by using a sketch and without using a calculator, calculate the values of the following:

3.2.1
$$\cot \theta$$
 (5)

3.2.2
$$\tan \theta - \sec \theta$$

(4)

3.3 Simplify to a single trigonometric ratio of x:

$$\frac{\sin(180^{\circ} + x) \cdot \tan 135^{\circ}}{\csc(90^{\circ} - x) \cdot \cos(360^{\circ} - x)}$$
(6)
[19]

QUESTION 4

Mathematics/SG/P2

Sketch graphs of the curves of f and g are shown in the diagram below:

Given: $f(x) = -2 \cos x$ and $g(x) = \cos 2x$ for $x \in [0^\circ; 180^\circ]$

- 4.1 Determine the numerical values of a, b, c, d and e. (5)
- 4.2 Determine the value(s) of x, for which:

4.2.1
$$g(x) - f(x) = 3$$
 for $x \in [0^{\circ}; 180^{\circ}]$ (1)

4.2.2
$$f(x) < 0$$
 for $x \in [0^{\circ}; 180^{\circ}]$ (3)

4.2.3
$$f(x) \cdot g(x) > 0$$
 for $x \in [0^{\circ}; 135^{\circ}]$ (3) [12]

QUESTION 5

5.1 Use fundamental trigonometric identities and NOT a sketch to simplify the following:

$$(\tan^2\theta + 1)(1-\sin^2\theta) \tag{4}$$

5.2 Solve for α , rounded off to TWO decimal digits if

$$\sin 2\alpha = -0.4 \text{ for } 2\alpha \in [0^{\circ}; 270^{\circ}]$$
 (4)

[8]

Copyright reserved GAUTENG Please turn over

(6)

(5)

(3)

(1)

7 Senior Certificate Examination

QUESTION 6

6.1 In the diagram alongside, \triangle PQR is an acute—angled triangle.

Use the diagram on the diagram sheet, or redraw the diagram in your answer book to prove that:

$$p^2 = q^2 + r^2 - 2(q)$$
 (r) cos P

- 6.2 In \triangle DEF, d = 5 units, e = 8 units and f = 12 units.
 - 6.2.1 Calculate the size of $\stackrel{\wedge}{F}$, rounded off to TWO decimal digits.
 - 6.2.2 Hence, calculate the area of \triangle DEF, rounded off to TWO decimal digits.
- 6.3 In the diagram alongside, A, B, P and C are the positions of four players on a sports field.

$$A \stackrel{\wedge}{P} C = x$$

 $\stackrel{\wedge}{A} = y$

- 6.3.1 Express, without reasons, \overrightarrow{APB} in terms of x.
- 6.3.2 Prove that the distance between players A and B is given by

$$AB = \frac{BP \cdot \sin x}{\sin y} \tag{4}$$

6.3.3 If BP = 50 m, $x = 150^{\circ}$ and $B = 30^{\circ}$, calculate, without using a calculator, the distance AB. (Leave the answer in surd form.) (5)

EUCLIDEAN GEOMETRY

NOTE: - DIAGRAMS FOR PROVING THEORY MAY BE USED ON THE DIAGRAM SHEETS OR REDRAWN IN YOUR ANSWER BOOK.

- DETACH THE DIAGRAM SHEETS FROM THE QUESTION PAPER AND PLACE THEM IN YOUR ANSWER BOOK.
- GIVE A REASON FOR EACH STATEMENT, UNLESS OTHERWISE STATED.

QUESTION 7

7.1 In the diagram alongside, AB is a chord of a circle with centre O.

Use the diagram on the diagram sheet, or redraw the diagram in your answer book to prove the theorem which states that:

If M is the midpoint of AB

then OM \(AB.

(5)

7.2 In the diagram alongside, O is the centre of circle NAM and

 $OPA \perp MPN$.

MN = 48 units

OP = 7 units

Calculate, with reasons, the length of PA.

(5)

7.3 In the diagram alongside, TR is a chord of circle PQRST.

 $QAT \perp PAS$

$$\hat{Q}_1 = 30^{\circ}$$

$$\hat{P}=\hat{S}_{1}$$

In the following questions, give a reason for each statement:

7.3.1 Name THREE angles each equal to 60° . (4)

7.3.2 Calculate the size of $Q \stackrel{\wedge}{R} S$. (2)

7.3.3 Prove that $PS \parallel QR$. (2)

7.3.4 Prove that TR is a diameter of the circle. (3)
[21]

QUESTION 8

8.1 In the diagram alongside, M and N are points on sides AB and AC respectively of Δ ABC.

Use the diagram on the diagram sheet or redraw the diagram in your answer book to prove the theorem which states that:

If MN || BC, then
$$\frac{AM}{MB} = \frac{AN}{NC}$$

(7)

8.2 In the diagram below, XYT is a triangle with Q the midpoint of YT.

P is a point on XY such that XQ and PT intersect at S.

SR | XY with R on YT.

Determine, with reasons, the numerical value of:

$$8.2.1 \qquad \frac{YR}{RQ} \tag{3}$$

$$8.2.2 \qquad \frac{TS}{TP} \tag{4}$$

[14]

Copyright reserved GAUTENG Please turn over

QUESTION 9

In the diagram below, PQ is a tangent to circle QRBAT.

RT is produced to meet tangent QP at P.

TA and RB are produced to meet at S.

SP || BA.

Let $\hat{S}_1 = x$

9.1 Name, with reasons, TWO other angles each equal to
$$x$$
. (3)

9.2 Prove that
$$\Delta PTS \parallel \Delta PSR$$
. (3)

9.3 9.3.1 Prove that
$$\triangle PQT \parallel \triangle PRQ$$
. (4)

9.3.2 Hence, show that
$$PQ^2 = PR \cdot PT$$
 (1)

9.4 Hence, show that
$$PQ = PS$$
 (3) [14]

Mathematics Formula Sheet (HG and SG) Wiskundeformuleblad (HG en SG)

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} \left(a + T_n \right)$$

$$S_n = \frac{n}{2} \left(a + \ell \right)$$

$$S_n = \frac{n}{2}(a + T_n)$$
 $S_n = \frac{n}{2}(a + \ell)$ $S_n = \frac{n}{2}(a + \ell)$

$$T_n = a.r^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r} (r \neq 1)$$
 $S_n = \frac{a(r^n-1)}{r-1} (r \neq 1)$

$$S_n = \frac{a(r^n - 1)}{r - 1} \quad (r \neq 1)$$

$$S_{\infty} = \frac{a}{1-r} \quad (|r| < 1)$$

$$\mathbf{A} = \mathbf{P} \left(1 + \frac{\mathbf{r}}{100} \right)^{\mathbf{n}} \qquad \qquad \mathbf{A} = \mathbf{P} \left(1 - \frac{\mathbf{r}}{100} \right)^{\mathbf{n}}$$

$$\mathbf{A} = \mathbf{P} \bigg(1 - \frac{\mathbf{r}}{100} \bigg)^{\mathbf{r}}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\mathbf{d} = \sqrt{(\mathbf{x}_2 - \mathbf{x}_1)^2 + (\mathbf{y}_2 - \mathbf{y}_1)^2}$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1}$$

 $m = tan\theta$

$$(x_3; y_3) = \left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$x^2 + y^2 = r^2$$

$$(x-p)^2 + (y-q)^2 = r^2$$

In
$$\triangle$$
 ABC: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

$$a^2 = b^2 + c^2 - 2bc.\cos A$$

area
$$\triangle ABC = \frac{1}{2}ab.\sin C$$

DEPARTMENT OF EDUCATION
DEPARTEMENT VAN ONDERWYS

SENIOR CERTIFICATE EXAMINATION/SENIORSERTIFIKAAT-EKSAMEN MATHEMATICS SG/WISKUNDE SG PAPER II/VRAESTEL II OCTOBER/NOVEMBER 2006

DIAGRAM SHEET/DIAGRAM	MVEL
INSTRUCTION	
This diagram sheet must be h complete.	anded in with your answer book. Ensure that your details are
INSTRUKSIE	
Hierdie diagramvel moet saan besonderhede volledig ingevu	n met jou antwoordeboek ingelewer word. Maak seker dat joulis.
EXAMINATION NUMBER EKSAMENNOMMER	
CENTRE NUMBER SENTRUMNOMMER	

EXAMINATION NUMBER EKSAMENNOMMER

QUESTION 1/VRAAG 1

QUESTION 2.1/VRAAG 2.1

QUESTION 4/VRAAG 4

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

EXAMINATION NUMBER EKSAMENNOMMER

QUESTION 6.1/VRAAG 6.1

QUESTION 6.3/VRAAG 6.3

QUESTION 7.1/VRAAG 7.1

QUESTION 7.2/VRAAG 7.2

EXAMINATION NUMBER EKSAMENNOMMER

	1			
1 1	1 1			
1 1	1 1			
	1 1		1 1	1 1
	1 1		l i	1 1 1

QUESTION 7.3/VRAAG 7.3

QUESTION 8.1/VRAAG 8.1

EXAMINATION	NUMBER
EKSAMENNOM	IMER

			1				
			l .				
			į.	l .			
				l .			
				l .			
			ŀ	l .			
			1	l .			
			1				
		1					

QUESTION 8.2/VRAAG 8.2

QUESTION 9/VRAAG 9

