

# education

Department: Education REPUBLIC OF SOUTH AFRICA

# **SENIOR CERTIFICATE EXAMINATION - 2006**

**MATHEMATICS P1: ALGEBRA** 

STANDARD GRADE

**FEBRUARY/MARCH 2006** 

301-2/1 E

Marks: 150

3 Hours

This question paper consists of 9 pages and 1 information sheet.

MATHEMATICS SG: Paper 1

X05



Copyright reserved

Please turn over

## INSTRUCTIONS TO CANDIDATES

Read the following instructions carefully before answering the questions:

- 1. This paper consists of **8** questions. Answer **ALL** the questions.
- 2. Clearly show **ALL** calculations, diagrams, graphs, et cetera you have used in determining the answers.
- 3. An approved calculator (non-programmable and non-graphical) may be used unless stated otherwise.
- 4. If necessary, answers should be rounded off to **TWO** decimal places, unless stated otherwise.
- 5. Graph paper is **NOT** required in this question paper.
- 6. Number the answers **EXACTLY** as the questions are numbered.
- 7. Diagrams are not necessarily drawn to scale.
- 8. It is in your own interest to write legibly and to present the work neatly.
- 9. An information sheet with formulae is included at the end of the question paper.

## **QUESTION 1**

1.1 Solve for x:

$$1.1.1 3(2x^2 - 5) = x (4)$$

1.1.2 
$$3x^2 + x - 5 = 0$$
 (round off your answer to TWO decimal places) (5)

1.1.3 
$$\sqrt{x} - 1 = 5$$
 (2)

1.2 Solve for x and y if they satisfy the following equations simultaneously:

$$x - 2y = 1$$

$$x^{2} - 2xy + y^{2} - 9 = 0$$
(8)

[19]

## **QUESTION 2**

- 2.1 The roots of a quadratic equation are  $x = 5 \pm \sqrt{2p-1}$ .
  - 2.1.1 Calculate the value of p for which the roots are real. (2)
  - 2.1.2 Give one value of p for which the roots are rational. (2)
- 2.2 Show that there is no real number x that satisfies the equation  $x^2 + x = -1$ . (5)

[9]

## **QUESTION 3**

- 3.1 The remainder is -2 when  $f(x) = 2x^2 mx 4x + 10$  is divided by (x-3). Determine the value of m. (4)
- 3.2 (x-2) is a common factor of the polynomials  $f(x) = 2x^3 ax + b$  and  $g(x) = x^3 ax^2 bx 8$ . Determine the values of a and b. (6)

[10]

## **QUESTION 4**

In the figure below, sketch graphs of f defined by  $f(x) = a(x - p)^2 + q$  and the semi-circle h are drawn. A(1; -4) is the turning point of f. P(3; 0) and B are points of intersection with the x-axis.



- 4.1.1 Determine the equation of h. (2)
- 4.1.2 Write down the values of p and q. (2)
- 4.1.3 Determine the value of a. (4)
- 4.1.4 Write down the range of f. (2)

Copyright reserved

MATHEMATICS/SG/P1 5 DoE/2006/237

#### SENIOR CERTIFICATE EXAMINATION - MARCH 2006

4.2 In the figure below the hyperbola f and the straight line g are represented. The graphs of f and g intersect at the point A(-1; 3).



Determine:

4.2.1 The equation of f (3)

4.2.2 The equation of the straight line g passing through the points A and (2;0) (5)

4.2.3 The values of x for which f(x) > g(x) and x < 0 (2)

[20]

## **QUESTION 5**

5.1 Simplify fully without using a calculator:

$$5.1.1 \qquad \frac{3^{2-x} - 4(3^{-x})}{3^{-x+2}} \tag{4}$$

$$5.1.2 \qquad \frac{\log 9}{\log \left(\frac{1}{3}\right)} \tag{4}$$

5.2 Solve for x, without using a calculator:

$$5.2.1 \qquad \left(\frac{1}{2}\right)^{x-9} = 4^{x+3} \tag{5}$$

5.2.2 
$$\log_4(x-1) + \log_4(x+2) = 1$$
 (6)

- 5.3 Given:  $12^{x+1} = 36(6^x)$ 
  - 5.3.1 Show that the equation can be written in the form:

$$2^x = 3 \tag{3}$$

5.3.2 Solve for 
$$x$$
, correct to two decimal places. (3)

[25]

## **QUESTION 6**

6.1 Given the arithmetic series: 5+9+13+...+401.

Calculate:

6.2 Given the sequence: 2; x; 18; ....

Calculate *x* if this sequence is:

6.3 Given: 
$$\sum_{k=1}^{10} 3(2)^{1+k}$$

6.4



In order to encourage South Africans to know their country better and to boost the tourism industry, a travel agent advertises a "travel now and pay later" promotion. The travel package costs R6 530 but can be paid back over a period of 18 months at an interest rate of 15% per annum, compounded monthly. What will the travel package eventually cost?

(6)

[28]

## **QUESTION 7**

- 7.1 Calculate the derivative of  $f(x) = 4x^2$  from **first principles**. (6)
- 7.2 Find  $\frac{dy}{dx}$  in each of the following:

$$7.2.1 y = x^3 - \frac{3}{x} (3)$$

7.2.2 
$$y = (x+1)(x-3)$$
 (3)

- 7.3 The x-coordinate of a point P on the graph of  $y = x^2 1$  is 2.
  - 7.3.1 What is the y-coordinate? (1)
  - 7.3.2 A tangent to the graph is drawn at P. What is the gradient of this line? (3)

[16]

## **QUESTION 8**

- 8.1 Given:  $f(x) = -x^3 3x^2$ .
  - 8.1.1 Determine the x- and y-intercepts of the graph of f. (3)
  - 8.1.2 Determine the co-ordinates of the turning points of the graph of f. (6)
  - Sketch the graph of f. Clearly show all the intercepts with the axes and the turning points on the graph. (4)
  - 8.1.4 For which values of x is f increasing? (2)

8.2 The diagram below represents a rectangular picture surrounded by a frame 1 cm in width. The sides of the frame measured along the **outer edge** are x cm and (52-x) cm as indicated.



- 8.2.1 Write the measurements of the sides of the picture in terms of x. (2)
- 8.2.2 Show that the area, A, of the picture is given by

$$A = -x^2 + 52x - 100. (2)$$

[23]

**TOTAL:** 150

# Mathematics Formula Sheet (HG and SG)

Wiskunde Formuleblad (HG en SG)

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$T_n = a + (n-1)d$$
 
$$S_n = \frac{n}{2}(a+T_n) \quad \text{or } / \text{ of } S_n = \frac{n}{2}(a+l)$$
$$S_n = \frac{n}{2}[2a + (n-1)d]$$

$$T_n = ar^{n-1}$$
  $S_n = \frac{a(1-r^n)}{1-r}$   $(r \neq 1)$   $S_n = \frac{a(r^n-1)}{r-1}$   $(r \neq 1)$   $S_{\infty} = \frac{a}{1-r}$   $(|r| < 1)$ 

$$A = P \left(1 + \frac{r}{100}\right)^n$$
 or  $r = P \left(1 - \frac{r}{100}\right)^n$ 

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = tan\theta$$

$$(x_3; y_3) = \left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$x^2 + v^2 = r^2$$

$$(x-p)^2 + (y-q)^2 = r^2$$

In 
$$\triangle ABC$$
: 
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

area 
$$\triangle ABC = \frac{1}{2}ab.\sin C$$