

education

Department:
Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATION - 2006

MATHEMATICS P2: GEOMETRY

HIGHER GRADE

FEBRUARY/MARCH 2006

301-1/2 E

Marks: 200

3 Hours

This question paper consists of 11 pages 1 formula sheet and 5 diagram sheets.

MATHEMATICS HG: Paper 2

X05

Copyright reserved

Please turn over

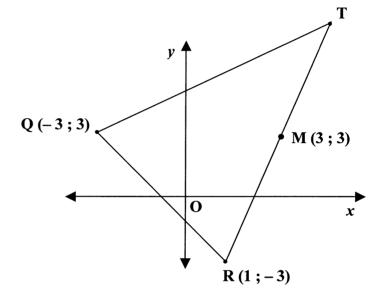
INSTRUCTIONS

- 1. This question paper consists of 10 questions, a formula sheet and diagram sheets.
- 2. Use the formula sheet to answer this question paper.
- 3. Detach the diagram sheets from the question paper and place them inside your **ANSWER BOOK.**
- 4. The diagrams are not drawn to scale.
- 5. Answer **ALL** the questions.
- 6. Number **ALL** the answers correctly and clearly.
- 7. **ALL** the necessary calculations must be shown.
- 8. Non-programmable calculators may be used, unless otherwise stated.
- 9. The number of decimal digits to which answers must be rounded off will be stated in the question where necessary.

ANALYTICAL GEOMETRY

NOTE: - USE ANALYTICAL METHODS IN THIS SECTION.

- CONSTRUCTION AND MEASUREMENT METHODS MAY NOT BY USED.


QUESTION 1

In the diagram alongside,

R(1;-3), Q(-3;3) and T

are the vertices of ΔTRQ .

M (3; 3) is the midpoint of TR.

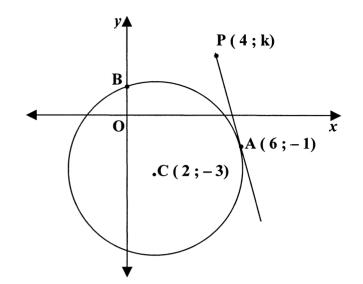
1.1 Determine:

1.1.1 The length of TR (leave the answer in surd form) (4)

1.1.2 The size of $\stackrel{\wedge}{R}$, rounded off to ONE decimal digit (6)

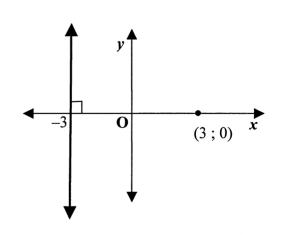
1.2 1.2.1 Determine the equation of the median from T to RQ. (9)

1.2.2 Hence, or otherwise, determine the coordinates of the point of intersection of the medians of Δ TRQ. (4)


or intersection of the inecitalis of \(\Delta\) in \(\Delta\) in \(\Delta\).

[23]

QUESTION 2


2.1 The circle with centre C(2; -3) passes through point A(6; -1) and through point B, which lies on the y-axis.

P (4; k) is a point such that
PA is a tangent to the circle.

- 2.1.1 Determine the equation of the circle.
- 2.1.2 Determine the equation of tangent PA.
- 2.1.3 Determine the value of k.
- 2.1.4 Hence, prove analytically that PB is a tangent to the circle.

2.2 In the diagram alongside, a circle with centre P (x; y) passes through point (3;0) and touches the straight line x = -3

- 2.2.1 Determine the equation of the locus of P.
- 2.2.2 Hence, name the shape of the locus of P.

[25]

(7)

(1)

(4)

(4)

(2)

(7)

TRIGONOMETRY

QUESTION 3

Answer this question without the use of a calculator.

3.1 Simplify the following to a single trigonometric ratio of θ :

$$\frac{\cos(\theta - 90^{\circ})}{\csc(\theta - 180^{\circ})} + \cos(360^{\circ} + \theta).\cos(90^{\circ} - \theta)$$
(7)

3.2 If $\cos 61^{\circ} = p$, express the following in terms of p:

$$3.2.1 \sin 209^{\circ}$$
 (3)

3.2.2
$$\csc(-421^{\circ})$$
 (3)

$$3.2.3 \qquad \cos 1^{\circ}$$
 (6)

[19]

QUESTION 4

Given: $f(x) = 2 \sin x$ and $g(x) = \cos(x + 30^\circ)$

4.1 Show that the equation $2 \sin x = \cos (x + 30^{\circ})$ can also be expressed as

$$\tan x = \frac{\sqrt{3}}{5} \tag{6}$$

- 4.2 Hence, determine the value(s) of $x \in [-90^{\circ}; 270^{\circ}]$, rounded off to ONE decimal digit, where f(x) = g(x) (3)
- 4.3 Use the system of axes given on the diagram sheet to draw sketch graphs of the curves of f and g for $x \in [-90^{\circ}; 270^{\circ}]$ Clearly show all the coordinates of turning points and intercepts with the axes. (9)
- 4.4 Use the solution(s) obtained in QUESTION 4.2 and the graphs drawn in QUESTION 4.3 to determine for which value(s) of $x \in [0^{\circ}; 270^{\circ}]$ is:

4.4.1
$$f(x) > g(x)$$
 (2)

4.4.2
$$f(x) \cdot g(x) < 0$$
 (3)

[23]

QUESTION 5

- 5.1 Write down an expression for $\sin (x + y)$ in terms of the sines and the cosines of x and y. (1)
 - 5.1.2 Hence, using QUESTION 5.1.1, show how to derive an expression for cos(x+y) in terms of the sines and the cosines of x and y. (3)
- 5.2 5.2.1 Prove that $\cos(x y) \cos(x + y) = 2\sin x \cdot \sin y$ (3)
 - 5.2.2 Hence or otherwise, calculate the numerical value of

2 sin 195°. sin 45°,

without the use of a calculator.

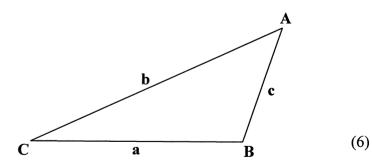
5.3 5.3.1 Prove the following identity:

$$\frac{\cos 2\theta + 1}{\sin 2\theta \cdot \tan \theta} = \cot^2 \theta \tag{4}$$

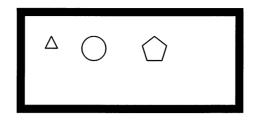
5.3.2 Determine the values of θ for which the identity in QUESTION 5.3.1 is undefined. Give the answer as a general solution.

[21]

(4)


(6)

QUESTION 6


6.1 In the diagram alongside \triangle ABC is obtuse angled.

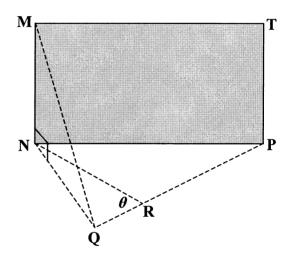
Use the diagram on the diagram sheet, or redraw the diagram in your answer book to prove that:

$$b^2 = a^2 + c^2 - 2(a)(c)\cos B$$

6.2

The diagram alongside is a representation of the picture above.


MNPT represents the rectangular writing board mounted on a vertical wall in a classroom.


Q and R represent the eyes of two learners sitting at desks facing the writing board.

Points N, Q, R and P lie on the same horizontal plane.

$$NR = RP = 2RQ = x$$

 $N\hat{R}Q = \theta$ and

$$NP = y$$

- If y = 2.3 metres, x = 1.5 metres and $NQM = 38^{\circ}$ 6.2.2 calculate, rounded off to ONE decimal digit:
 - (a)

a) The value of
$$\theta$$
 (2)

(c) The size of
$$N\hat{Q}R$$
 (4)

[25]

(5)

EUCLIDEAN GEOMETRY

NOTE: - DIAGRAMS FOR PROVING THEORY MAY BE USED ON THE

DIAGRAM SHEETS OR REDRAWN IN YOUR ANSWER BOOK.

- DETACH THE DIAGRAM SHEETS FROM THE QUESTION PAPER AND PLACE THEM IN YOUR ANSWER BOOK.

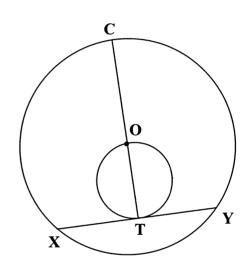
 GIVE A REASON FOR EACH STATEMENT, UNLESS OTHERWISE STATED.

QUESTION 7

In the diagram alongside, O is the centre

of the larger circle and OT the diameter

of the smaller circle.


Chord XY of the larger circle is

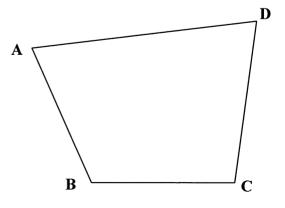
a tangent to the smaller circle at T.

COT is a straight line.

If OC = r and XY = $\frac{3r}{2}$, show stating reasons that:

$$CT = \frac{(4+\sqrt{7})r}{4}$$

[7]


QUESTION 8

8.1 In the diagram alongside, ABCD is a quadrilateral.

Use the diagram on the diagram sheet or redraw the diagram in your answer book to prove the theorem which states that:

If
$$\hat{\mathbf{B}} + \hat{\mathbf{D}} = 180^{\circ}$$
, then

ABCD is a cyclic quadrilateral.

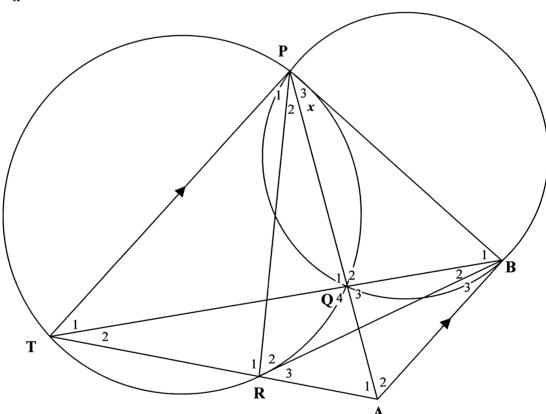
(6)

Copyright reserved

- Write down the statement of the converse of the following theorem:

 'The angle between a tangent to a circle and a chord drawn from the point of contact is equal to an angle in the alternate segment.'
- (2)

8.3 In the diagram below, two circles PTRQ and PQB intersect at P and Q.


AB is a tangent to the smaller circle, with PQA a straight line.

BQ produced meets the larger circle at T such that PT || BA.

TA intersects the larger circle at R.

PR, PB and RB are drawn.

Let $\hat{P}_3 = x$

8.3.1 Name, stating reasons, TWO other angles each equal to x.

(3)

- 8.3.2 Prove that:
 - (a) PRAB is a cyclic quadrilateral
 - (b) AB is a tangent to circle TRB (5)

[21]

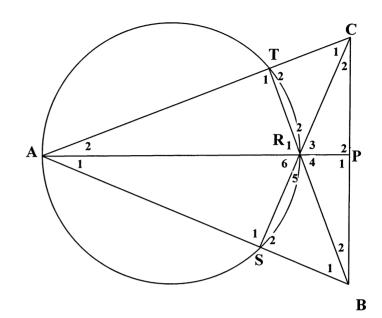
(5)

10

QUESTION 9

In the diagram alongside,

AR is a diameter of circle


ASRT.

AS, AR and AT are produced

to B, P and C respectively so

that BPC is a straight line.

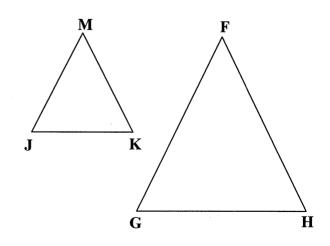
SC and TB intersect at R.

9.1 Prove that AP is an altitude of \triangle ACB.

(4)

9.2 If it is further given that AP is the bisector of \overrightarrow{BAC} , then prove that TS || CB.

[12]


(8)

QUESTION 10

10.1 In the diagram alongside, Δ MJK and Δ FGH are given. Use the diagram on the diagram sheet, or redraw the diagram in your answer book to prove the theorem which states that:

If
$$\hat{M} = \hat{F}$$
, $\hat{J} = \hat{G}$ and $\hat{K} = \hat{H}$,

then
$$\frac{GH}{JK} = \frac{FH}{MK}$$

(7)

Copyright reserved

K

In the diagram alongside AB is the diameter of the circle with centre O.

SK is a tangent to the circle at C.

 $SO \perp AB$

CA and SO intersect at T.

KBOA is a straight line.

Let
$$\stackrel{\wedge}{A} = x$$

Prove that : $\begin{array}{c|c}
C & & & & \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$

$$10.2.1 K\hat{C}T = \hat{T}_2$$

10.2.2
$$\Delta \text{ CKB } ||| \Delta \text{ AKC } ||| \Delta \text{ COT}$$
 (6)

B

10.2.3 BK . AK =
$$\frac{OT^2 . CA^2}{CT^2}$$
 (5)

[24]

(6)

TOTAL: 200

Mathematics Formula Sheet (HG and SG) Wiskunde Formuleblad (HG en SG)

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} \left(a + T_n \right)$$

$$S_n = \frac{n}{2} \left(a + \ell \right)$$

$$T_n = a + (n-1)d S_n = \frac{n}{2}(a + T_n) S_n = \frac{n}{2}(a + \ell) S_n = \frac{n}{2}[2a + (n-1)d]$$

$$T_n = a.r^{n-1}$$

$$T_n = a \cdot r^{n-1}$$
 $S_n = \frac{a(1-r^n)}{1-r} \quad (r \neq 1)$

$$S_n = \frac{a(r^n - 1)}{r - 1} \quad (r \neq 1)$$

$$S_{\infty} = \frac{a}{1-r} \quad (|r| < 1)$$

$$\mathbf{A} = \mathbf{P} \left(1 + \frac{\mathbf{r}}{100} \right)^{\mathbf{n}} \qquad \mathbf{OR} / \mathbf{OF} \qquad \mathbf{A} = \mathbf{P} \left(1 - \frac{\mathbf{r}}{100} \right)^{\mathbf{n}}$$

$$\mathbf{A} = \mathbf{P} \bigg(1 - \frac{\mathbf{r}}{100} \bigg)^{\mathbf{n}}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\mathbf{d} = \sqrt{(\mathbf{x}_2 - \mathbf{x}_1)^2 + (\mathbf{y}_2 - \mathbf{y}_1)^2}$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$\mathbf{m} = \frac{\mathbf{y_2} - \mathbf{y_1}}{\mathbf{x_2} - \mathbf{x_1}}$$

$$m = tan\theta$$

$$(x_3; y_3) = \left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$x^2 + y^2 = r^2$$

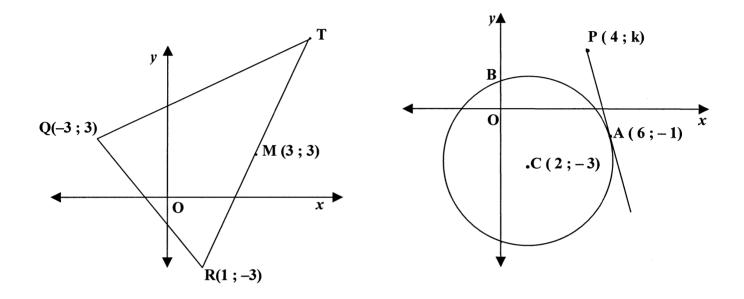
$$(x-p)^2 + (y-q)^2 = r^2$$

In
$$\triangle$$
 ABC: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

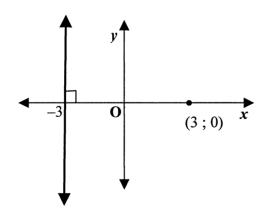
$$a^2 = b^2 + c^2 - 2bc.\cos A$$

area
$$\triangle ABC = \frac{1}{2}ab.\sin C$$

SENIOR CERTIFICATE EXAMINATION/SENIORSERTIFIKAAT-EKSAMEN MATHEMATICS HG/WISKUNDE HG PAPER II/VRAESTEL II FEBRUARY/MARCH 2006

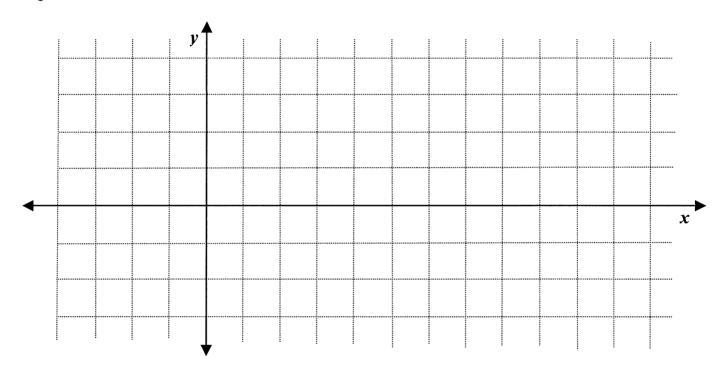

DIAGRAM SHEET/DIAGRAMVEL										
INSTRUCTION										
This diagram sheet must be are complete.	handed in w	ith your a	nswer boo	ok. Please e	nsure that your detail					
INSTRUKSIE										
Hierdie diagramvel moet saam met jou antwoordeboek ingelewer word. Maak asseblief seker dat jou besonderhede volledig ingevul is.										
EXAMINATION NUMBER EKSAMENNOMMER										
CENTRE NUMBER SENTRUMNOMMER										

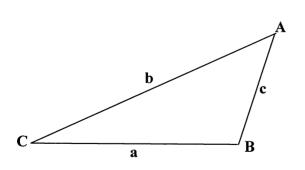
EXAMINATION NUMBER EKSAMENNOMMER



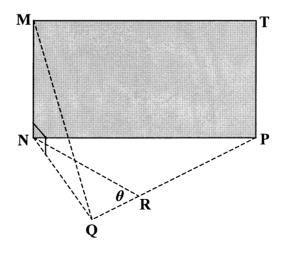
QUESTION 1 / VRAAG 1

QUESTION 2.1 / VRAAG 2.1


QUESTION 2.2 / VRAAG 2.2

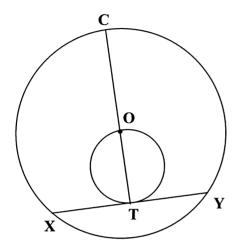

MATHEMATICS/HG/V2/WISKUNDE/HG/V2 3 DoE/2006/237 SENIOR CERTIFICATE EXAMINATION/SENIORSERTIFIKAAT-EKSAMEN - MARCH/MAART 2006 DIAGRAM SHEET/DIAGRAMVEL

EXAMINATION NUMBER							
EKSAMENNOMMER							


QUESTION 4.3 / VRAAG 4.3

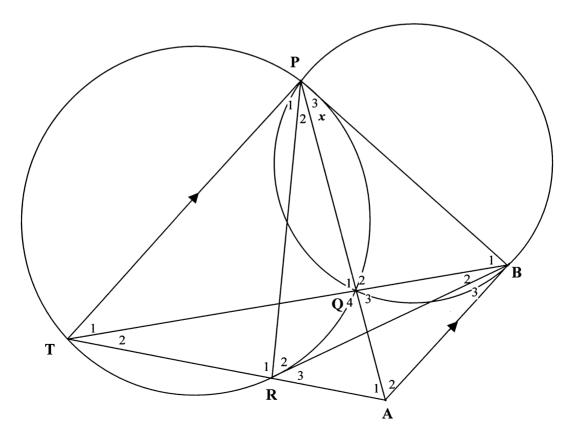
QUESTION 6.1 / VRAAG 6.1

QUESTION 6.2 / VRAAG 6.2



MATHEMATICS/HG/V2/WISKUNDE/HG/V2 4 DoE/2006/237 SENIOR CERTIFICATE EXAMINATION/SENIORSERTIFIKAAT-EKSAMEN - MARCH/MAART 2006 DIAGRAM SHEET/DIAGRAMVEL

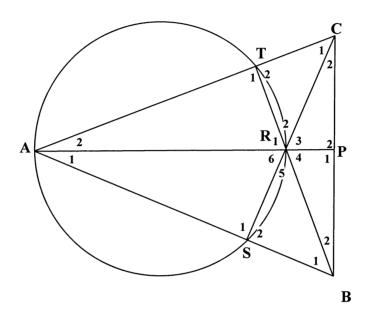

EXAMINATION	NUMBER
EKSAMENNOM	MER


QUESTION 7 / VRAAG 7

QUESTION 8.1 / VRAAG 8.1

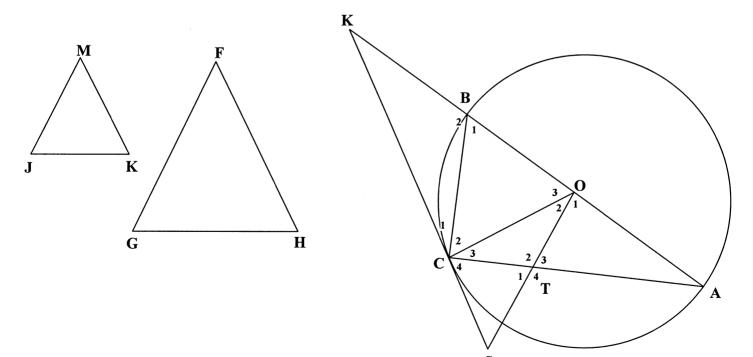
QUESTION 8.3 / VRAAG 8.3

Copyright reserved/Kopiereg voorbehou


Please turn over/Blaai om asseblief

MATHEMATICS/HG/V2/WISKUNDE/HG/V2 5 DoE/2006/237 SENIOR CERTIFICATE EXAMINATION/SENIORSERTIFIKAAT-EKSAMEN - MARCH/MAART 2006 DIAGRAM SHEET/DIAGRAMVEL

EXAMINATION NUMBE	R
EKSAMENNOMMER	


							ì	í
								Ĺ
								Ĺ
								i
								i
			1					i
								Ĺ
								ŧ
								i.

QUESTION 9 / VRAAG 9

QUESTION 10.1 / VRAAG 10.1

QUESTION 10.2 / VRAAG 10.2

Copyright reserved/Kopiereg voorbehou