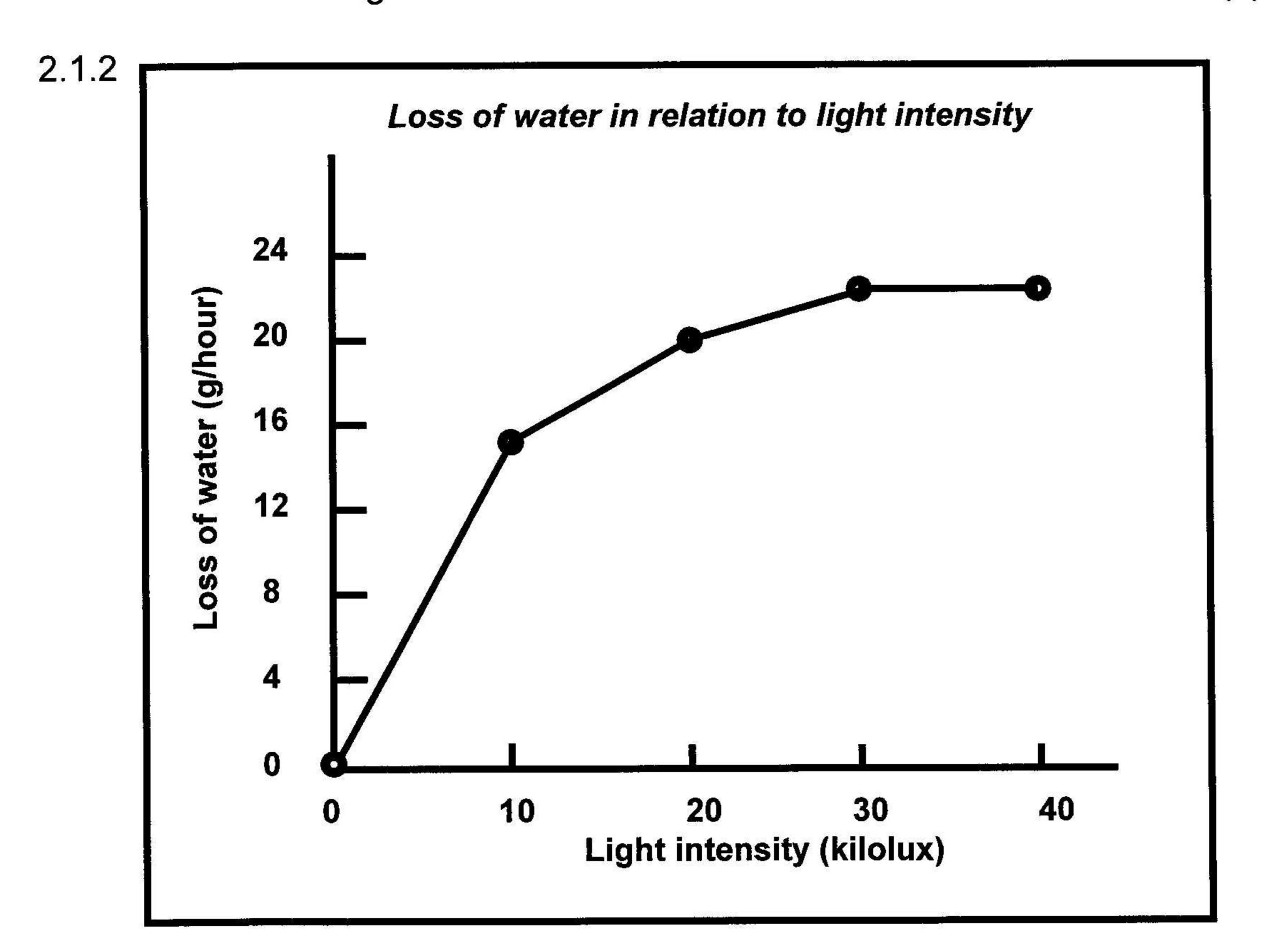
## SENIOR CERTIFIC

# **QUESTION 1**

| 1.1 | 1.1.1          | C 2/2/                                  |                                                                                                      |          |               |
|-----|----------------|-----------------------------------------|------------------------------------------------------------------------------------------------------|----------|---------------|
|     | 1.1.2          | D VV                                    |                                                                                                      |          |               |
|     | 1.1.3<br>1.1.4 | 2 120                                   |                                                                                                      |          |               |
|     | 1.1.5<br>1.1.6 | 200 200 200 200 200 200 200 200 200 200 |                                                                                                      |          |               |
|     | 1.1.7          | B √√                                    |                                                                                                      |          |               |
|     | 1.1.8          | B√√                                     |                                                                                                      | (8 x 2)  | (16)          |
| 1.2 |                |                                         |                                                                                                      | (0 // _/ | (10)          |
|     |                | Turgo<br>Xerop                          | r √<br>hytes/succulents √                                                                            |          |               |
|     | 1.2.3          | Ureth                                   | ra √                                                                                                 |          |               |
|     |                |                                         | ostasis √<br>of Henlé √                                                                              |          |               |
|     | 1.2.6          | Corpu                                   | is callosum √                                                                                        |          |               |
|     |                |                                         | ympathetic system √<br>al nervous system √                                                           |          |               |
|     | 1.2.9          | Ectoth                                  | nerms √                                                                                              |          | /4 <b>^</b> \ |
|     | 1.2.10         | nuben                                   | nation √                                                                                             |          | (10)          |
| 1.3 | 1.3.1          | A only                                  | , W                                                                                                  |          |               |
|     | 1.3.2          | Both A                                  | A and B $\sqrt{}$                                                                                    |          |               |
|     |                | B only B only                           |                                                                                                      |          |               |
|     |                | A only                                  |                                                                                                      | (5 x 2)  | (10)          |
|     |                |                                         |                                                                                                      |          |               |
| 1.4 | 1.4.1          | (i)                                     | To remove any water adhering to the potato discs √ to ensure a more accurate measurement of the mass |          | (2)           |
|     |                | /ii\                                    | Using 10 discs would increase the reliability of the res                                             |          |               |
|     |                | (II)                                    | rather than using a single one                                                                       | uito     | (2)           |
|     |                | (iii)                                   | Allowing enough time √ for osmosis to take place√                                                    |          | (2)           |
|     | 1.4.2          | (i)                                     | It increased √                                                                                       |          | (1)           |
|     |                | (ii)                                    | It decreased √                                                                                       |          | (1)           |

|     | 1.4.3 | the<br>- Wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | potato discs were placed in a solution that was solution had a lower water potential than that of er moved out of the potato cells through exosmoloss of water led to a decrease in the mass of the solution that was a solution t | the cells √<br>osis √ |             |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|
|     |       | discs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ie potato             | (3)         |
|     | 1.4.4 | Betwe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | en 0,3-0,4 $\sqrt{\text{mol/dm}^3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | (2)         |
|     | 1.4.5 | the ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ovide more accurate results /<br>ctual change in mass would not be reliable √<br>the initial mass of each batch of discs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |             |
|     |       | 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - | ot the same $\sqrt{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | (2)<br>(15) |
| 1.5 | 1.5.1 | Auxin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | (1)         |
|     | 1.5.2 | (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D $\sqrt{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | (1)         |
|     |       | (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Auxins are produced in the tip of the stem √ but because the plastic doesn't allow the move of auxins downwards√ no cell elongation took place √ thus no growth√                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ement<br>(any 3)      | (3)         |
|     | 1.5.3 | (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C√                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | (1)         |
|     |       | (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Auxins which are produced in the tip of the ste through the filter paper $$ and cause cell elongation on the shady side $$ causing the stem to bend towards light $$ and growth took place $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m can move            | 3) (3)      |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | (9)         |

**Total Question 1: 60** 


**TOTAL SECTION A: 60** 

## **SECTION B**

## **QUESTION 2**

2.1

2.1.1 More than one reading could be taken at each light intensity  $\sqrt{\phantom{a}}$  and the average loss calculated  $\sqrt{\phantom{a}}$  (2)



| Correct type of graph                              | 1                                                                                |
|----------------------------------------------------|----------------------------------------------------------------------------------|
| Title of graph                                     | 1                                                                                |
| Correct choice and label for x - axis              |                                                                                  |
| Correct choice and label for y - axis              | 1                                                                                |
| Correct unit for light intensity                   | 1                                                                                |
| Correct unit for loss of water                     | 1                                                                                |
| Appropriate scale for x- axis (constant intervals) |                                                                                  |
| Appropriate scale for y- axis (constant intervals) | 1                                                                                |
| Plotting of points                                 | 2: plotted all 4 points; 1: plotted 2 or 3 points; 0: plotted less than 2 points |
| All plotted points joined                          | 1                                                                                |

(11)

Copyright reserved

## 5 MARKING MEMORANDUM SENIOR CERTIFICATE EXAMINATION - MARCH 2006

|     | 2.1.3 | <ul> <li>At a light intensity of 30 kilolux and higher √</li> <li>the radius of the stomatal pore is at a maximum /</li> <li>no further increase in the size of the stomatal pore √</li> <li>other limiting factors preventing further increase in pore size</li> <li>thus no further increase in the rate of transpiration √</li> <li>thus water loss remain constant √</li> </ul> | <b>3 V</b>           |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|     |       | - thus water loss remain constant v  (any 3)                                                                                                                                                                                                                                                                                                                                        | (3)<br>(1 <b>6</b> ) |
| 2.2 | 2.2.1 | The water potential of the epidermal cells remains constant $\gamma$ and that of the guard cells varies $\sqrt{}$                                                                                                                                                                                                                                                                   | (2)                  |
|     | 2.2.2 | - 1 400 √ kPa √                                                                                                                                                                                                                                                                                                                                                                     | (2)                  |
|     | 2.2.3 | Open √                                                                                                                                                                                                                                                                                                                                                                              | (1)                  |
|     |       | At Y the water potential of the guard cells is higher $\sqrt{}$ thus the guard cells are turgid $\sqrt{}$ Thin outer walls of guard cells will bulge out $\sqrt{}$ Thick inner walls of guard cells will be pulled apart $\sqrt{}$                                                                                                                                                  | (any 2) (2)<br>(7)   |
| 2.3 | 2.3.1 | (i) Root pressure√                                                                                                                                                                                                                                                                                                                                                                  |                      |
|     | (     | ii) Guttation√                                                                                                                                                                                                                                                                                                                                                                      | (2)                  |
|     | 2.3.2 | - To prevent the loss of water $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                                                                                                                                                                                                           | (2)                  |
|     | 2.3.3 | <ul> <li>- Wet soil√</li> <li>- High humidity√</li> <li>- Low temperature √</li> <li>- Low light intensity √</li> <li>- Wind still/calm conditions √ (Mark first four only)</li> </ul>                                                                                                                                                                                              | (any 4) (4)          |
|     | 2.3.4 | A high √ root pressure will increase/favour √guttation because of hydrostatic pressure building up√ in the xylem vessels√ water droplets are forced out at the edges and margins of the leaves√                                                                                                                                                                                     | (any 4) (4)<br>(12)  |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                     |                      |

**Total Question 2: 35** 

#### **QUESTION 3**

3.1

- 3.1.1 To create a greater surface area√ for the movement of substances into the dialysis fluid√ (2)
- 3.1.2 It must be selectively permeable/have small holes√
  to allow filtration of substances√
  (2)
- 3.1.3 It should contain the same amount √ of useful substances like mineral salts, glucose, amino acids etc than the blood of the patient√ It should not contain any√ excretory wastes such as urea, creatine, uric acid etc√ (4)
- 3.1.4 Blood needs to be filtered continuously√

  The kidney machine can only be used from time to time√

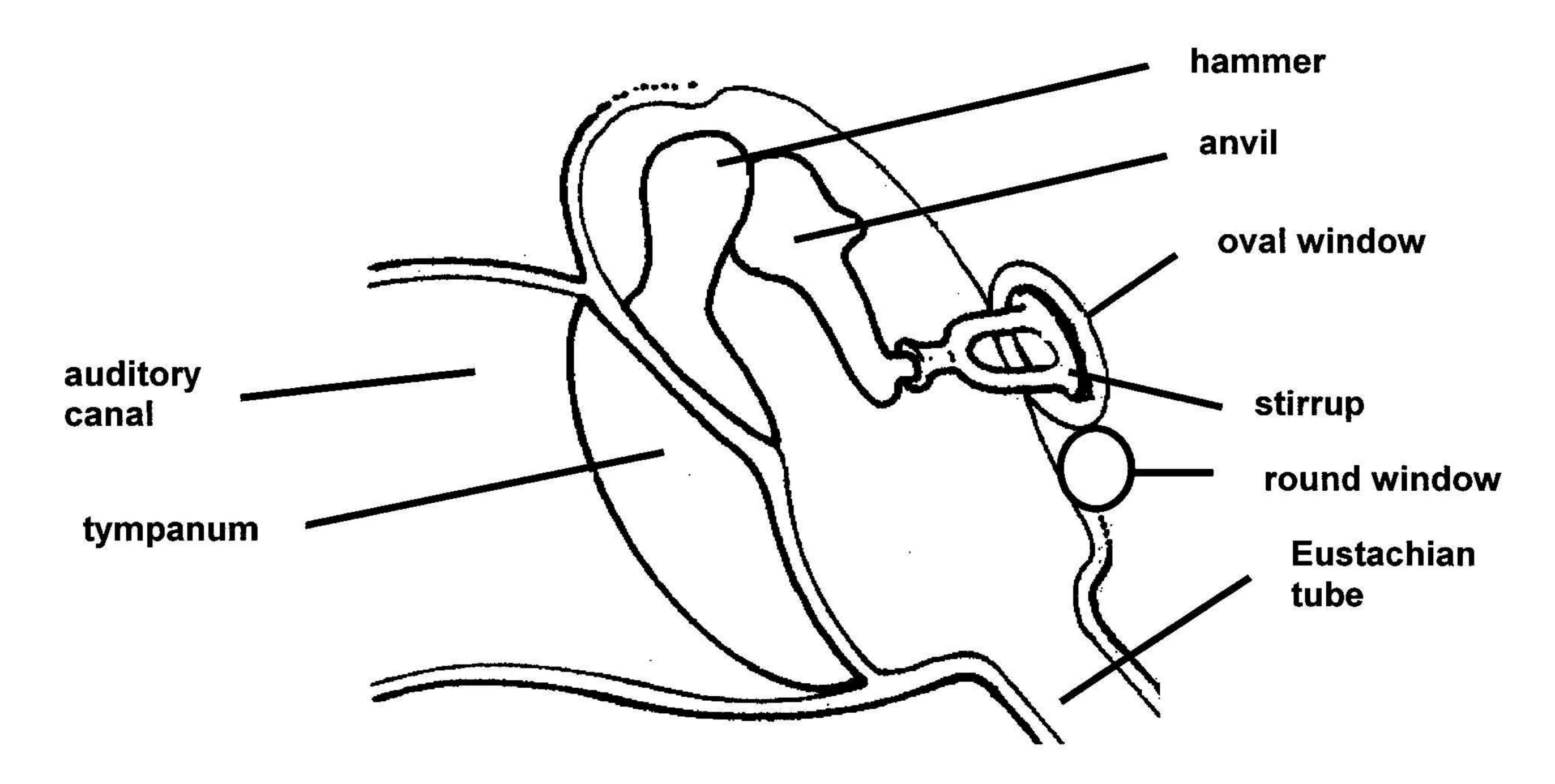
  If kidney machine is used continuously√

  it will negatively affects the patient's life style√

  (any 2)(2)

  (10)

3.2


- 3.2.1 Water √ - Salt √ (2)
- 3.2.2 The production of sweat by the skin is determined by the need to control body temperature√
  - and not according to the water content of the body√
  - The kidney contains mechanisms that control the water content√
  - under the influence of ADH√
  - and aldosterone√
  - ADH changes the permeability of the renal tubule \
  - The sodium pump mechanism/aldosterone in the kidney√
  - creates a gradient for water absorption√
  - more salt √
  - and water √ lost by the kidney than through the skin every day (any 6) (6)
- 3.2.3  $3000 \text{ cm}^3 \sqrt{-400 \text{ cm}^3 1100 \text{ cm}^3 200 \text{ cm}^3 \sqrt{} = 1300 \sqrt{} \text{ cm}^3 \sqrt{}$ or  $(1\ 100 - 900) \text{ cm}^3 = 200 \text{ cm}^3 \sqrt{}$ Thus  $200 \text{ cm}^3 \text{ less urine}$ Thus  $(1\ 500 - 200) \text{ cm}^3 \sqrt{} = 1300 \sqrt{} \text{ cm}^3 \sqrt{}$  (4)
- 3.2.4 (i) Exercise  $\sqrt{}$  High environmental temperatures  $\sqrt{}$  Fever / illness  $\sqrt{}$  (any 2) (2)

## 7 MARKING MEMORANDUM SENIOR CERTIFICATE EXAMINATION - MARCH 2006

|      |        | <ul> <li>i) - More √ ADH is secreted</li> <li>- which increase √</li> <li>- the permeability √</li> <li>- of the distal convoluted tubules √</li> <li>- and the collecting ducts √</li> <li>- which cause more re-absorption √</li> <li>- of water √</li> <li>- into the blood √</li> <li>- and thus the water content of the urine decreases</li> </ul> | √ (any 6) (6)       |
|------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|      | 3.2.5  | With heart failure the blood pressure drops $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                                                                                                                                                                   | (3)                 |
|      | 3.2.6  | More water can be reabsorbed √ less water is lost in urine √ Urine is more concentrated √ and water is conserved√                                                                                                                                                                                                                                        | (any 2) (2)<br>(25) |
| QUES | STION  |                                                                                                                                                                                                                                                                                                                                                          | estion 3: 35        |
| 4.1  | 111    | 37.6 √°C √                                                                                                                                                                                                                                                                                                                                               | (2)                 |
|      | 4.1.1  | 37.0 V 6 V                                                                                                                                                                                                                                                                                                                                               | (4)                 |
|      | 4.1.2  | 40 √ minutes √                                                                                                                                                                                                                                                                                                                                           | (2)                 |
|      | 4.1.3  | <ul> <li>Heat is lost √</li> <li>from the skin √</li> <li>to the cold water √</li> </ul>                                                                                                                                                                                                                                                                 | (any 2) (2)         |
|      | 4.1.4  | Shivering cause an increase in muscle activity $$ which produces heat $$ to increase body temperature $$                                                                                                                                                                                                                                                 |                     |
|      |        | back to normal √                                                                                                                                                                                                                                                                                                                                         | (any 3)(3)          |
|      |        | <ul> <li>(i) Ear√</li> <li>ii) The ear has a larger surface area √</li> <li>with more superficial blood capillaries √</li> <li>through which heat is lost to the surroundings √</li> <li>through radiation√</li> </ul>                                                                                                                                   | (1)<br>(any 2) (2)  |
| 4.2  | Sclera |                                                                                                                                                                                                                                                                                                                                                          | (12)                |
|      | Chord  | oid                                                                                                                                                                                                                                                                                                                                                      | (3)                 |

Copyright reserved

## 4.3 The human middle ear and associated structures√



| Correct diagram     | 1     |
|---------------------|-------|
| Size                | 1     |
| Shape               | 1     |
| Quality of line     | 1     |
| Correct proportions | 1     |
| Caption             | 1     |
| Labels              | any 3 |

4.4

4.4.1 (i) D√√

(2)

(9)

(ii) C√√

(2)

(iii) A√√

(2)

(iv)  $B\sqrt{\sqrt{}}$ 

(2)

4.4.2 - The bony skull/cranium√

- Meninges/membranes√

- Cerebrospinal fluid √

(3)

(11)

**Total Question 4: 35** 

**TOTAL SECTION B: 105** 

### 9 MARKING MEMORANDUM SENIOR CERTIFICATE EXAMINATION - MARCH 2006

### SECTION C

### **QUESTION 5**

5.1

5.1.1 Iris √ (1)- Between the second √ 5.1.2 - and third √ intervals - Between the sixth √ (ii) - and seventh √ intervals 5.1.3 The electric bulb was at the same distance √ from the eye (1)5.1.4 - At the five √ - minute √ interval or Between  $4-5\sqrt{minutes}\sqrt{or}$  between  $5-6\sqrt{minutes}\sqrt{s}$ - At this interval the size of the pupil was the largest √ - It was opened wider to adapt to the dim light √ (4)5.1.5 - At the 8 minute interval the eye is adjusted for bright light √ - At the 9 minute interval the eye is exposed to dim light √ the radial muscles contract  $\sqrt{\phantom{a}}$ - and the pupil dilates √ - and more light enters the eye√ (any 4) (4) 5.1.6 - The closer any bright light source is to the eye √

5.1.6 - The closer any bright light source is to the eye √
 - the smaller the diameter of the pupil √

and vice versa (2)

5.1.7 Constricts in bright light/prevents excess light from entering the  $eye\sqrt{\phantom{0}}$ 

(17)

Copyright reserved

## 10 MARKING MEMORANDUM SENIOR CERTIFICATE EXAMINATION - MARCH 2006

- 5.2 Balancing on one leg takes place through the sensitive hair cells √ found in the ampullar √ cupulae √
  - at the base of the semi circular canals √
  - and otoliths √
  - found in maculae √
  - of the utriculus √ and sacculus √
  - and are responsible for dynamic equilibrium √
  - and register the position √ and movement of the head in any direction √
  - Impulses are generated √ and transmitted to the cerebellum √
  - which also receive impulses from proprioreceptors √
  - in muscles and joints  $\sqrt{\phantom{a}}$  and reacts to the tension or tonus of the muscles  $\sqrt{\phantom{a}}$
  - by transmitting the information to the cerebrum  $\sqrt{\phantom{a}}$
  - which brings about a co-ordinated reaction √
  - and enabling the person to maintain balance and body position  $\boldsymbol{\nu}$

(any 15)

## Synthesis

| Not attempted                                                            | 0   |
|--------------------------------------------------------------------------|-----|
| Significant gaps in the logic and flow of the answer                     | 1   |
| Minor gaps in the logic and flow of the answer                           | 2   |
| Well structured - demonstrates insight and understanding of the question | 3   |
|                                                                          | (0) |

(3) (18)

Total Question 5: 35

**TOTAL SECTION C: 35** 

**GRAND TOTAL: 200**