SECTION A # **QUESTION 1** | | 1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6 | C < < < < < > < < < < < < < < < < < < < | | | | |-----|--|--|---|-------|-------------------| | 1.2 | 1.1.7 | AVV | | 7 X 2 | (14) | | | 1.2.2
1.2.4
1.2.5
1.2.6
1.2.7 | | ate√
acid√
riality√
esium√
ehase√
eri√ | | (8) | | 1.3 | 1.3.2
1.3.4
1.3.5
1.3.6 | A only A only Both) A only A only A only | √√
√√
A & B√√
√√ | 7 X 2 | | | 1.4 | 1.4.1 | (i)
(ii)
(ii)
(iv) | Starch ✓ Proteins ✓ Fats ✓ Glucose/fructose/galactose/monosaccharides/maltose/lacto | se√ | (1)
(1)
(1) | | | 1.4.2 | The suproteir | ubstance did not contain any nitrogen√√ which is present in | | (2) | | | 1.4.3 | (ii) | Blue-black√ Brick-red/purple/violet √ Orange/yellow/red-brown√ | | (1)
(1) | | | 1.4.4 | Lipase | | | (1)
(10 | | 1.5 | | | | | |-----|---|----------------------|--|---| | | - The Proposition of the Control | carrot | (Mark first ONE only) | (1) | | | 1.5.2 | table | salt & seafood √
(<i>Mark first TWO only</i>) | (2) | | | 1.5.3 | carrot | s√ / oranges√ / potatoes√
(Mark first ONE only) | (1) | | | 1.5.4 | whole | wheat bread√
<i>(Mark first ONE only)</i> | (1) | | | 1.5.5 | egg-y | olk / seafood√
(Mark first ONE only) | (1)
(6) | | 1.6 | 1.6.1 | To de | monstrate the mechanism of breathing√ | (1) | | | 1.6.2 | (i)
(ii)
(iii) | Trachea√ Thoracic cavity√ Lungs √ | (1)(1)(1) | | | 1.6.3 | (i)
(ii) | Balloons will deflate ✓ / reduce in size / become smaller Decrease ✓ | (1)
(1) | | | 1.6.4 | | Ribs and intercostals muscles are flexible in humans but the bell jar is fixed $\checkmark \checkmark /$ lungs fill up the thoracic cavity in humans but there is space in bell jar between the balloons and the bell jar $\checkmark \checkmark /$ diaphragm in humans is convex but in the bell jar the rubber sheet (part D/E) is flat $\checkmark \checkmark /$ (Mark first reason only) | (2)
(8) | | | | | TOTAL SECTION A: | 60 | # **QUESTION 2** | 2.1 | | | | |--------------|-------|--|-------------| | 2.1.1 | (i) | A - amylase√
C - maltase√ | (2) | | | (ii) | B - maltose√
D - glucose√ | (2) | | | (iii) | E - columnar epithelium√
F - venule√ | (2) | | 2.1.2 | Wate | | (1) | | 2.1.3 | | through passive diffusion \(\strict{/}\) with a diffusion gradient or active transport \(\strict{/}\) against the diffusion gradient when there is a higher concentration \(\strict{/}\) of glucose in the epithelium cells than in the intestine using energy | (3) | | 2.1.4 | | bile ✓ neutralizes the acid ✓ of the stomach bicarbonate ions ✓ secreted by the Brunner's glands / in the pancreatic juice ✓ | (4) | | 2.1.5 | Hepat | tic portal vein√ | (1) | | | | stored as glycogen√
used during cellular respiration to form ATP√
converted into fats√ | (3) | | 2.1.6 | | (very) long small intestine ✓ surface area is increased/ by folds of the mucosa/ millions of villi and microvilli ✓ movement of the intestine wall and villi ensures close contact of food with absorption area ✓ absorption surface is thin-walled/only a single layer of columnar epithelium cells ✓ absorption surface is moist ✓ because of the digestive juices and mucin well supplied with blood capillaries/lacteals ✓ (Mark first three only) | (3)
(21) | | 2.2
2.2.1 | Betwe | een 07:00 ✓ – 08:00 ✓ | (2) | | 2.2.2 | 08:45 | | (2) | | 2.2.3 | (i) | glucose level rose from 60 to 70 mg/ _{100ml} in 15 minutes√ | | | | (ii) | no effect ✓ | (2) | 2.2.4 - The increased blood glucose concentration ✓ has to first stimulate the pancreas ✓ to secrete insulin (2) - 2.2.5 More glucose available for oxidation and release of energy - as a result less/no need for fatty acids to be oxidized ✓ - fatty acids reconverted to fats√ Any 2 X 1 (2) - 2.2.6 When the glucose concentration increases - the islets of Langerhans √/ pancreas is stimulated - to secrete insulin ✓ - which stimulates the liver < - to convert ✓ the excess glucose into glycogen ✓ - glucose concentration decreases√ Any 4 x 1 (4) (14) **Total Ouestion 2: 35** Copyright reserved Please turn over ### **QUESTION 3** | A | |-----| | ~ 1 | | - 1 | | | 3.1.1 A - Palisade ✓ mesophyll C - Chloroplasts √ (2) ### 3.1.2 - (i) It is waxy/water proof ✓ to prevent excessive loss of moisture/thus ensuring that water is available for photosynthesis ✓ - It is transparent√ thus allowing light to pass through√ # Mark first ONE only (2) - (ii) contains an abundance of chloroplasts for sufficient photosynthesis to take place // maximum absorption of light - small intercellular spaces√ which facilitate gaseous exchange√ - cells are elongated and therefore more cells are exposed to light // allowing diffusion of gases into and out of the cells - they are arranged with their long axis perpendicular to the surface ✓ which allows most of the incoming light to be absorbed ✓ - are found just below the epidermis√ to capture sunlight effectively√ - are in close contact with the xylem and the phloem√ to transport water and products of photosynthesis√ # Mark first TWO only (4) ### 3.1.3 | Cells B (epidermal cells) | Cells D (guard cells) | |---|---| | evenly thickened walls < | inner walls much thicker than outer walls ✓ | | no chloroplasts √ | contains chloroplasts √ | | brick-shaped / isodiametric/irregular shape | bean-shaped/ kidney-shaped | any 2 x 2 + 1 for table (5) (13) - 3.2 - 3.2.1 selected areas must have chloroplasts√√/ must be green/ the mid-rib and larger veins should be avoided (2) (0) 3.2.2 - To determine the effect of light intensity ✓ on the rate ✓ of photosynthesis (2) - 3.2.3 the discs produced gas/es ✓ - making them buoyant/float√ (2) - 3.2.4 hydrogen carbonate is a source of carbon dioxide < - thus ensuring that it does not become a limiting factor / keeping the CO₂ concentration constant√ (2) BIOLOGY/ HG/P1 | 3.2.5 | using batches of five and calculating the averages ✓ reduces/eliminates errors ✓ | (2) | |-------|--|--------------------| | 3.2.6 | (i) The rate of photosynthesis increased ✓ due to the increased light intensity ✓ OR The increased light intensity ✓ would have increased the temperature for enzyme activity ✓ (ii) - Decrease ✓ in photosynthetic rate - because of other limiting ✓ factors/other requirements (e.g. CO₂) | (2) | | | are exhausted | (2)
(14) | | 3.3.1 | The higher the alcohol concentration ✓ in the blood, the lower the enzyme activity ✓ therefore less food will be digested ✓ OR The lower the alcohol concentration ✓ in the blood, the higher the enzyme activity ✓ therefore more food will be digested ✓ | (3) | | 3.3.2 | 30√%√ | (2) | | 3.3.3 | 60 - 45√
15
 | | | | = 25√% | (3)
(8) | **Total Question 3: 35** Copyright reserved Please turn over | 024000 B | - | - | | 4 | |----------|-------|------------|----|----------| | α | | <i> </i> | N | / | | QU |) i i | U | IN | Series . | | 4.1 | | | |--------------|---|------------| | 4.1.1 | A - columnar/ciliated/epithelium√ B - goblet cells√ | (2) | | | - Traps dust/germs/particles√
- Produces mucus – antiseptic√
<i>Mark first TWO only</i> | (2) | | 4.1.3 | - Trachea√ - Bronchus√ - Bronchioles√ Mark first TWO only | (2) | | 414 | Cartilage rings√ | (1) | | | | (7) | | 4.2
4.2.1 | A - Lung√ B - Larynx√ C - Medulla oblongata√ D - Diaphragm√ | (4) | | 4.2.2 | rise in concentration of CO₂/drop in pH ✓ in the blood drop in concentration of oxygen in the blood√ | (2) | | 4.2.3 | when the CO₂ concentration of the blood increases, the sensory cells in the carotid arteries√ in the neck and aorta√ are stimulated and impulses are sent to the cardiovascular√ and respiratory centres√ in the medulla√ the medulla in turn send impulses to the heart√ causing it to beat faster intercostals muscles, diaphragm and abdominal muscles causing breathing movements to speed up√ thus, more carbon dioxide is removed quickly and more oxygen is taken up rapidly and supplied to the tissues√ when the CO₂ concentration decreases, the breathing process slows down to normal√ Any 6 x 1 | (6)
(12 | | 4.3.1 | To determine whether CO₂√ is released during cellular respiration√ | (2) | | 4.3.2 | Absorbs CO ₂ √ from incoming air | (1) | | 4.3.3 | In flask A, the lime water is meant to show that there is no CO_2 coming in from the atmosphere \checkmark In flask B, the lime water is used to determine whether the animal has released CO_2 \checkmark | (2) | | 4.3.4 | - Lime water in flask B will turn milky√
- Flask A the lime water will stay clear√ | (2) | Please turn over Copyright reserved # 4.3.5 - set up a control without the mouse /set up a similar investigation with different living organisms to verify results√√ set up a number of samples / repeat the experiment√√ (Mark first TWO only) (Mark first TWO only) # 4.3.6 Mitochondrion√ (1) - 4.3.7 oxygen must be present√ - the pyruvic√ acid produced during glycolysis√ enters the mitochondrion√ - energized hydrogen√ atoms, carbon dioxide molecules and some ATP√ are released during the cyclic series of reactions - hydrogen atoms are picked up by co-enzymes√ which act as hydrogen carriers√ Any (4) (16) **Total Question 4: 35** Copyright reserved Please turn over ### SECTION C ### **QUESTION 5** 5.1 5.1.1 Density-independent√ not dependent on the size of the population/it is caused by environmental factors√ (2) Rubric for the mark allocation of the graph | Correct type of graph | | | | | | |------------------------------|--|------------|------------|------------------|--| | Title of graph | | | | | | | Correct label for X-axis | 1 | | | | | | Correct label for Y-axis | .1 | | | | | | Appropriate scale for X-axis | correct width of bars: (1) equal intervals between bars: (1) | | | | | | Appropriate scale for Y-axis | correct values: (1) equal intervals between the values: (1) | | | | | | Plotting of the bars | 3: draws | 2: draws 3 | 1: draws 1 | 0: no bars drawn | | | | all bars | or 4 bars | or 2 bars | / drawn | | | | correctly | correctly | correctly | incorrectly | | Wrong type of graph drawn: marks lost for "correct type of graph" as well as for drawing of the bars. (11) (17) #### Role of carrying capacity 5.2 - there is a limit to which a habitat can support a population - this factor is responsible for the maximum number of individuals that can be supported by an environment < - which prevents unlimited increase of natural populations - if there is a further increase in numbers, environmental resistance can build up - once a population has reached its maximum size - it fluctuates around the carrying capacity - some fluctuate slowly, others rapidly, some regular other irregular√ ### Role of competition - this factor comes into play when animals compete for limited recourses e.g. food√ - the different species - and intraspecific competion - competition between organisms of the same species < - lead to an increase in mortality - and a decrease in natality of a population√ - it can force organisms to occupy another space or food√ 5 Any ### Role of predation - when one species kill and feed on members of another species - the population size of the other species will decrease√ - it includes carnivorism, herbivorism, cannabilism, etc.√ - if the predator population grows, more food is needed. - therefore more prey is caught and killed < - this causes the prey population to decrease - when there is less prey, the predator population have less food√ - which causes the prey population to increase - therefore there must be a balance in the predator-prey interaction - to ensure natural stable populations Any # **Synthesis** | MARKS | DESCRIPTION | | | |-------|--|--|--| | 0 | Not attempted | | | | 1 | Significant gaps in the logic and flow of the answer | | | | 2 | Minor gaps in the logic and flow of the answer | | | | 3 | Well structured – demonstrates insight and understanding of the question | | | Factual Content: 15 Synthesis: 03 (18) TOTAL QUSETION 5: (35)