Physics Paper II

Time Allowed: 75 Minutes]

Maximu

Note: This Paper contains Fifty (50) multiple choice questions. carries Two (2) marks. Attempt All questions.

- Spherical Bessel function of order n1. is a prduct of $\sqrt{\frac{\pi}{2x}}$ with:
 - (A) Bessel function of order $n + \frac{1}{2}$
 - (B) Bessel function of order $n \frac{1}{2}$
 - (C) Bessel function transformed in polar coordinates
 - (D) Spherical harmonic of order n
 - The angle between vector $\hat{i} + \hat{j}$ and 2. $\hat{j} + \hat{k}$ is (in radian):
 - (A) π
 - (B) $\pi/2$
 - (C) $\pi/6$
 - (D) $\pi/4$

- Student Bounty Com The cube roots of unity 1, of 3. form:
 - (A) a cyclic group of order 3
 - (B) a permutation group
 - (C) SU3 group
 - (D) $SU2 \times U$ group
 - The value of 4.

is:

- (A) $\sqrt{2}$
- (B) 1.6
- (C) $\sqrt{3}$
- (D) 0.8

5. The real matrix $A = \begin{bmatrix} a & f & g \\ -f & a & -h \\ -g & h & a \end{bmatrix}$ is

skew symmetric when:

$$(A) a = 0$$

(B)
$$f = 0$$

(C)
$$g = h$$

(D)
$$f = g$$

6. The eigenvalues of the matrix

$$\begin{pmatrix} 1 & \omega \\ \omega & 1 \end{pmatrix}$$
 are :

- (A) 1
- (B) $\pm \omega$
- (C) $\pm \omega^2$
- (D) $\pm i$
- 7. A complex function f(z) is given by:

$$f(z) = \sqrt{z}' + \frac{1}{z - a} + \exp(z)$$

The singularities of f(z) are:

- (A) simple pole at z = a
- (B) branch point at z = 0
- (C) essential singularity at $z \to \infty$
- (D) all of the three above

- S. The determinant of a 3 symmetric matrix is 36. If two on eigenvalues are 2 and 3, then the sum of the eigenvalues is:
 - (A) 30
 - (B) 10
 - (C) 11
 - (D) 31
- 9. A harmonic oscillator in one dimension is perturbed by the potential αx^3 . The ground state energy of the oscillator to a first order in perturbation is:

(A)
$$\frac{\hbar\omega}{2} + \alpha$$

(B)
$$\frac{3}{2}\hbar\omega + \alpha$$

(C)
$$\frac{\hbar\omega}{2} + \alpha^3$$

(D)
$$\frac{\hbar\omega}{2}$$

- 10. A particle moves in one-dimensional potential V(x). At x = a, if V has a finite discontinuity (jump), then which of the following is true for its wave function o and its first derivative ϕ' at x = a?
 - (A) ϕ is continuous and ϕ' must be discontinuous
 - (B) ϕ is discontinuous and ϕ' must be continuous
 - (C) both ϕ and ϕ' are discontinuous
 - (D) both ϕ and ϕ' are continuous
- In quantum mechanics, three dimensional wave function $\psi(\overrightarrow{r})$ of a particle:
 - (A) has dimension of (energy × time)
 - (B) has dimension of (length)^{-3/2}
 - (C) has dimension of energy
 - (D) is dimensionless

Student Bounty.com A system is known described by the wave

$$\psi(\theta, \phi) = \frac{1}{\sqrt{30}} \left\{ 5Y_4^0 + Y_6^0 + 2 \right\}$$

where $Y_l^m(\theta, \phi)$ are spherical harmonics. The probability of finding the system in a state with m = 0 is:

- (A) zero
- (B) $6/\sqrt{30}$
- (C) 6/30
- (D) 13/15
- What is the degeneracy of the third 13. excited state for a particle in 3-dimensional isotropic Harmonic oscillator potential?

(Note: ground state is not an excited state)

- (A) 10
- (B) 6
- (C) 4
- (D) 3

- 14. The parity of wave function ψ is associated with which of the following transformation?
 - (A) Space translation
 - (B) Space rotation
 - (C) Space inversion
 - (D) Space exchange of two particles
- Which of the following processes involves tunnelling through a potential barrier?
 - (A) Pair production
 - (B) α-decay
 - (C) β-decay

- Student Bounty.com variational The 16. perturbation theory, when a obtain the value of the ground energy:
 - (A) gives energy value higher than or equal to the exact ground state energy
 - (B) always gives exact ground state energy
 - (C) gives energy value lower than the exact ground state energy
 - (D) gives energy value which is sometimes higher than or sometimes lower than the exact ground state energy
- 17. In a scintillation detector, the height of the output pulse is proportional to:
 - (A) Energy of the incident photon
 - (B) Intensity of the incident photon
 - (C) Energy and intensity of the photon
 - (D) Does not depend either on

- 18. If 'N' number of gadgets are connected to a power supply with a capacity of 'X' amperes without overloading then:
 - (A) Total current drawn by all the gadgets should be equal to $\frac{X}{2}$ ampere
 - (B) Total current drawn by all the gadgets should be equal to N.X ampere
 - (C) Total current drawn by all the gadgets should be equal to X
 - (D) Total current drawn by all the gadgets should be equal

- Student Bounty.com 19. If a square wave generator oscilloscope in a.c. mod would oscilloscope?
 - (A) A perfect square wave
 - (B) Distorted square wave
 - (C) A sawtooth wave
 - perfect square with change in repetition rate
 - If a oscilloscope is operated in a d.c. mode, one can faithfully measure:
 - (A) only a.c. voltage
 - (B) only d.c. voltage
 - (C) both a.c. and d.c. voltage
 - frequency (D) only low voltage

- 21. In recording a powder X-ray diffraction pattern:
 - (A) the specimen and detector are both rotated
 - (B) the specimen alone is rotated
 - (C) the detector alone is rotated
 - (D) the specimen and the source are both rotated
- In a Michelson Interferometer, the 22. mirror M2 is moved such that 800 fringes are counted. The wavelength of the source used was 6000 Å. Through what distance the mirror M₂ must have been moved?
 - (A) 0.24 mm
 - (B) 0.48 mm
 - (C) 0.36 mm

- Student Bounty Com 23. For the measurement chamber diffusion pump and a mechanical pump, one would require the following combination of gauges:
 - (A) Thermocouple/Pirani
 - (B) Penning-Pirani
 - (C) Thermocouple/Mercury Manometer
 - (D) Pirani/Mercury Manometer
- 24. The vapour diffusion pump works in the following region of air flow:
 - (A) Molecular flow
 - (B) Turbulent flow
 - (C) Lamellar flow

- A cork is submerged in a pail of water by a spring attached to the bottom of the pail. The pail is held by a child in an elevator. During the initial acceleration as the elevator travels to the next lower floor, will the displacement of the spring:
 - (A) increase
 - (B) decrease
 - (C) remain the same
 - (D) indeterminate
- A satellite is launched into a circular 26. orbit of radius R. A second setellite is launched into an orbit of radius 1.01 R. Then, the period of the second satellite is:
 - (A) larger by 1.5%
 - (B) smaller by 1%
 - (C) larger by 2%

Student Bounty Com 27. A sphere of radius a liquid of viscosity n, Stokes' law its drag is 6 Simultaneously, a second sphere identical mass but with radius 2R is released. Then the ratio of their terminal velocities is:

(A)
$$\frac{V_R}{V_{2R}} = 1$$

(B)
$$\frac{V_R}{V_{2R}} = \frac{3}{2}$$

(C)
$$\frac{V_R}{V_{2R}} = 2$$

(D)
$$\frac{V_R}{V_{2R}} = \frac{2}{3}$$

- What would be the approximate 28. length of a day if the earth spun so fast that bodies floated on the equator ? Take the radius of the earth = 6×10^6 m and $g = 9.8 \text{ m/sec}^2$.
 - (A) 12 hrs
 - (B) 6 hrs
 - (C) 3 hrs

- 29. An example of a scleronomic, holonomic, conservative and unilateral constraint is:
 - (A) simple pendulum with rigid support
 - (B) simple pendulum with variable length
 - (C) a spherical container of fixed radius filled with gas
 - (D) an expanding or contracting spherical container of gas
- A planet has elliptical orbit with sun 30. at the focus as shown in the figure. Which position of the orbit the planet has the highest speed?

- (A) A
- (B) B

31. If the Lagrangian of is:

If the Lagrangian of (a) is:
$$L(\rho,\,\theta,\,\dot{\rho},\,\dot{\theta}) = \frac{m}{2} \Big(\rho^2 \dot{\theta}^2 + \dot{\rho}^2 \, \csc^2 \, \alpha \Big)$$

 $-mg \rho \cot \alpha$

then conserved quantities are:

- $(A) p_0$
- (B) p_{ρ} and p_{θ}
- (C) p_{θ}
- (D) none of the above
- Example of a non-central force 32.is:
 - (A) Gravitational force $-\frac{Gm_1m_2}{r^2}\hat{r}$
 - (B) Coulomb force $\frac{z_1 z_2}{r^2} \hat{r}$
 - (C) Hooke law kr
 - (D) dipole-dipole interaction $\frac{\overline{p}.\overline{r}}{r^3}$ where \bar{p} is the dipole

- An infinitely long line-charge has a uniform linear charge density \(\lambda\). If r denotes the distance of a point from the wire, then magnitude of the electric field at the point is:
 - (A) proportional to $\frac{1}{r}$
 - (B) proportional to $\frac{1}{r^2}$
 - (C) proportional to $\frac{1}{r^3}$
 - (D) independent of r
- dispersion relation 34. The electromagnetic waves in a certain medium is $\omega^2 = \alpha k$, where α is constant, ω the angular frequency and k the magnitude of the wave vector. The velocity of the energy propagation by electromagnetic waves in this medium is:
 - (A)
 - (B)
 - (C)

- Student Bounty Com 35. The dispersion electromagnetic waves medium is $\omega^2 = \alpha k^2$, when constant, w the angular frequen and k the magnitude of the wave vector. Which of the following statements is correct?
 - (A) The phase velocity in the medium is α
 - (B) The group velocity in the medium is α
 - (C) The medium is dispersive
 - (D) The medium is non-dispersive
- The interaction energy of an electric 36. dipole \bar{p} in an external electric field
 - (A) $\bar{p} \cdot \bar{E}$

Ē is:

- (B) $-\overline{p} \cdot \overline{E}$
- (C) $|\bar{p} \times \bar{E}|$
- 15~豆1

37. In the Young's double slit experiment, the intensity of central maximum is I2. If either of the slits is closed, the intensity at the same location is I_1 . The relation between I_1 and I_2 is:

- (A) $I_2 = 4I_1$
- (B) $I_2 = 2I_1$
- (C) $I_2 = I_1$
- (D) $I_1 = 2I_2$

38. Maxwell introduced an additional term in:

- (A) Gauss's law
- (B) Faraday's law
- (C) Ampere's law
- (D) Coulomb's law

The skin depth δ of a good metal, 39. for the microwave frequency ω follows the relation:

- (A) $\delta \propto \omega$
- (B) $\delta \propto \frac{1}{\omega}$
- (C) $\delta \propto \sqrt{\omega}$

Student Bounty.com 40. For a certain m where g and \in are cond permitivity of the medium radiation of frequency ω, the material is:

- (A) a good conductor
- (B) a good insulator
- (C) partially insulating
- (D) a semiconductor

41. The entropy of an ideal gas at absolute zero is:

- (A) ∞
- (B) 0
- (C) Nk_{B}

For a system of N non-interacting 42.fermions enclosed in a volume 'V' at costant temperature T, the average occupation number of the 'rth' energy level is given by:

(A)
$$\overline{n}_r = \frac{1}{e^{\beta(\epsilon_r - \mu)} + 1}$$

(B)
$$\overline{n}_r = \frac{1}{(e^{\beta(\epsilon_r - \mu)} - 1)}$$

(C)
$$\overline{n}_r = e^{-\beta(\epsilon_r - \mu)}$$

(D)
$$\bar{n}_r = (e^{\beta(\epsilon_r - \mu)} + 1)$$

- 43. A first order phase transition is characterised by:
 - (A) a divergence of the specific heat at T_C, the critical temperature
 - (B) A cusp in the average energy at TC
 - (C) The constancy of entropy in the transition
 - (D) A latent heat is involved in the transition process

- Student Bounty Com A gas of molecu f mess 'm' is in thermal equil an absolute temperature v_z are the components of the vel \overline{v} of each molecule, then the mean value of $\overline{v^2}$:
 - (A) 0
 - (B) $\frac{1}{2}k_{\rm B}T$
 - (C) $\frac{3}{m}k_{\rm B}T$
 - (D) Nk_BT
- The Fermi energy of a free electron 45. gas at absolute zero is of the order of:
 - (A) electron-volts
 - (B) MeV
 - (C) keV

Consider an ideal gas of N molecules 46. enclosed in a volume 'V' maintained at a temperature 'T'. The correct expression for the entropy of the system is:

(A)
$$S = Nk_B \left[ln V + \frac{3}{2} ln T + \sigma \right]$$

(B)
$$S = Nk_B \left[ln \left(\frac{V}{N} \right) + \frac{3}{2} ln T + \sigma \right]$$

(C)
$$S = k_B \left[\ln V + \frac{3}{2} \ln T + \sigma \right]$$

(D)
$$S = k_B \left(\frac{N}{V}\right) \left[\ln\left(\frac{V}{N}\right) + \right]$$

$$\frac{3}{2}\ln T + \sigma$$

- If the temperature of a black body is increased by a factor of 2, the amount of energy/ volume radiated increases by a factor of:
 - (A) 2
 - (B) 4
 - (C) 8

- Student Bounty Com 48. If the temperature of gas is increased by a fact specific heat increases by of:
 - (A) 2
 - (B) 4
 - (C) 8
 - (D) 16
- X-ray diffraction 49. In Laue experiment in the study of single crystal structure, the following X-ray source is used:
 - (A) Monochromatic
 - (B) Non-monochromatic
 - (C) Pulsed Monochromatic
 - (D) Bychromatic
- 5 boys and 3 girls are to stand in 50. a straight line such that no two girls are adjacent. The number of ways in which this can be done is:
 - (A) 5!
 - (B) 3!
 - (C) $5! \times 3!$