### आर्घव्याञ्याता, रसाभभशास्त्र चास्मी पर

2011

Code: RNM

परीक्षा दिः १२)१२४२०११ प्रश्नपुस्तिका क्रमांक BOOKLET No.

प्रश्नपुरितका

वेळ :  $1\frac{1}{6}$  (दीड) तास

चाळणी परीक्षा रसायनशास्त्र विषयक ज्ञान

SKIII DOUNKY.COM एकूण प्रश्न : 150

एकुण गुण: 150

### सुचना

सदर प्रश्नपुस्तिकेत 150 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही

प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता **बॉलपेनने** लिहावा.

परीक्षा-क्रमांक शेवटचा अंक केंद्राची संकेताक्षरे

- वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमुद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नथे.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण **एखादा प्रश्न कठीण वाटल्या**स त्यावर वेळ न घालविता पढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- ्रप्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मुल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची अचूक उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

### ताकीद

ह्या प्रश्चपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर

उधङ सूचनेविना पर्यवेक्षकांच्या

विकासिक न्यायमधार्य नावकार एर्ट्सामा रक्ष

RNM

2

Student Bounty Com कच्च्या कामासाठी जागा / SPAGE FOR ROUGH ( ) अर

1.

- Student Bounty.com What does the relation  $\Delta x \times \Delta p = \frac{h}{4\pi}$  represent? Heisenberg's uncertainty principle **(2)** (4)Pauli's exclusion principle
- The angular momentum quantum number is denoted by which letter? 2.
  - (1) n

**(1)** 

(3)

**(2)** 

Schrodinger's wave equation

(3)

- (4) l
- "No two electrons in an atom can have same set of four identical quantum numbers." 3. It is the statement of
  - **(1)** Aufbau's principle

- Hund's rule (2)
- Pauli's exclusion principle

De-Broglie equation

- None of these **(4)**
- The effective nuclear charge zeta is nearly equal to the nuclear charge for which 4. orbital?
  - **(1)** 1s orbital

**(2)** Outermost orbital

**(3)** 2p orbital

- Total nuclear charge of all orbitals **(4)**
- 5. Match the molecules and geometry according to valence shell electron pair repulsion theory for the following molecules:

|      | <u>Molecules</u> | <u>Geo</u> | <u>Geometry</u> |  |  |
|------|------------------|------------|-----------------|--|--|
| i.   | $\mathrm{NH}_3$  | a.         | Linear          |  |  |
| ii.  | CIF <sub>3</sub> | b.         | V-shaped        |  |  |
| iii. | $ICl_2^-$        | c.         | T-shaped        |  |  |
| iv.  | H <sub>2</sub> O | d.         | Trigonal b      |  |  |

Trigonal bipyramidal d.

 $SF_{4}$ 

- **Pyramidal**
- **(1)** i-d ii-c iii-b iv-e v-a
- **(2)** ii-c iii-a iv-b v-d
- **(3)** i-b ii-d iii-c iv-a v-e
- **(4)** i-c ii-e iii-d iv-a v-b
- 6. The molecule among CCl<sub>4</sub>, PCl<sub>3</sub>, SF<sub>4</sub> and NH<sub>3</sub>, which does not contain lone pair of electrons around the central atom is
  - **(1)** CCl
- **(2)** PCl<sub>3</sub>
- (3) SF<sub>4</sub>
- (4) NH<sub>3</sub>

SPACE FOR ROUGH WORK

|        |                                                                                                                       |             |                         | SE.                         |
|--------|-----------------------------------------------------------------------------------------------------------------------|-------------|-------------------------|-----------------------------|
|        |                                                                                                                       |             |                         | Taen                        |
| MM     |                                                                                                                       | 4           |                         | (B)                         |
|        | hat is the bond order of carbon infiguration?                                                                         | monoxid     | le (CO) as              | per the molecular orbit     |
| (1)    | Four (2) Six                                                                                                          | (3)         | Three                   | (4) Eight                   |
| th     | per Fajans' rules the formation of we<br>e cation has high positive charge, so<br>ion has high negative charge and la | mall siz    | e and ns <sup>2</sup> p |                             |
| (1)    | Valence bond                                                                                                          | (2)         | Covalent 1              | oond                        |
| (3)    | Ionic bond                                                                                                            | <b>(4</b> ) | Co-ordina               | tion bond                   |
| 0. s-l | olock elements consist of metals                                                                                      | (3)         | gases                   | (4) colloids                |
| (1)    | highly electro-positive elements                                                                                      | <b>(2)</b>  | low electro             | o-positive elements         |
| (3)    | highly electro-negative elements                                                                                      | (4)         | moderatel               | y electro-negative elements |
| . Al   | kali metals have minimum effective                                                                                    | nuclear     | r charge an             | d hence they have the       |
| (1)    | smallest atomic radii                                                                                                 |             |                         |                             |
| (2)    |                                                                                                                       | pective     | periods                 |                             |
| (3)    |                                                                                                                       |             |                         |                             |
| (4)    | largest atomic radii in their resp                                                                                    | ective p    | eriods                  |                             |
|        | agonal relationship existing between<br>e basis of                                                                    | n a pair    | of s-block e            | lements can be explained on |
| (1     | atomic volume and density                                                                                             |             |                         |                             |
| (2     | metallic and non-metallic charac                                                                                      | ter         |                         |                             |
| (3     | polarising power and electronega                                                                                      | tivity      |                         |                             |

SPACE FOR ROUGH WORK

(4) atomic and ionic radii

|           |             |                                         |          |                                                       |            |                              |                       | S                                |
|-----------|-------------|-----------------------------------------|----------|-------------------------------------------------------|------------|------------------------------|-----------------------|----------------------------------|
|           |             | ,                                       |          |                                                       |            |                              |                       | ade                              |
| A         |             |                                         |          |                                                       | 5          |                              |                       | 13                               |
| 13.       | The<br>acid | •                                       | f the el | ements of whi                                         | ch group   | are electron o               | leficient a           | nd act as Lewi                   |
|           | (1)         | Gr. IA                                  | (2)      | Gr. IIIA                                              | (3)        | Gr. IVB                      | (4)                   | Gr. IB                           |
| 14.       |             | tron diffra<br>anitride (S <sub>4</sub> |          |                                                       | neasurem   | ents have s                  | hown the              | at tetrasulphu                   |
|           | (1)         | a tetrahed                              | lral str | ucture                                                |            |                              |                       |                                  |
|           | <b>(2)</b>  | an eight-n                              | nember   | ed cradle ring                                        | structure  | •                            |                       |                                  |
|           | (3)         | an eight-m                              | nember   | ed puckered ri                                        | ing struct | ure                          |                       |                                  |
|           | (4)         | a six-mem                               | bered 1  | ring structure                                        |            |                              | ·                     |                                  |
| 15.       | Whi         | ch halogen                              | canno    | t form any int                                        | erhalogen  | compound?                    |                       |                                  |
|           | (1)         | Iodine                                  | (2)      | Chlorine                                              | (3)        | Bromine                      | (4)                   | Fluorine                         |
| 16.       | Perc        | ovskite is th                           | e mine   | ral having str                                        | ucture     |                              |                       |                                  |
|           | (1)         | CaTiO <sub>3</sub>                      | (2)      | FeTiO <sub>3</sub>                                    | (3)        | ${ m MgTiO}_3$               | (4)                   | MgAl <sub>2</sub> O <sub>4</sub> |
| <b>7.</b> | All (       | of the follow                           | ving sta | itements about                                        | t the tran | sition elemen                | ts are true           | e except that,                   |
|           | (1)         | all of the t                            | transiti | on elements a                                         | re metalli | ic                           |                       |                                  |
|           | <b>(2</b> ) | in aqueous                              | s soluti | on many of the                                        | eir simple | e ions are colo              | oured                 |                                  |
|           | (3)         | most of th                              | ese ele  | ments show on                                         | ıly one va | lence state                  |                       |                                  |
|           | (4)         | most of the                             | ese ele  | ments show pr                                         | onounced   | l catalytic acti             | ivity                 |                                  |
| 18.       | The         | purple colo                             | ur of [7 | Γi(H <sub>2</sub> O) <sub>6</sub> ] <sup>3+</sup> ior | n is due t | 0                            |                       |                                  |
|           | (1)         | unpaired o                              |          |                                                       | <b>(2)</b> | transfer of a                | n electron            | ı                                |
|           | (3)         | presence o                              | f water  | molecule                                              | (4)        | reflection of                | light                 |                                  |
| 19.       |             |                                         | •        | l <sub>3</sub> .5NH <sub>3</sub> , Coo                | •          | $_3$ and $\mathrm{CoCl}_3$ . | 3NH <sub>3</sub> sinc | ce the secondar                  |
|           | (1)         | trigonal pl                             | anar g   | eometry                                               | <b>(2)</b> | tetrahedral (                | geometry              |                                  |
|           | (3)         | linear geor                             | metry    |                                                       | (4)        | octahedral g                 | eometry               |                                  |

SPACE FOR ROUGH WORK

- The proper name of the compound [Co(NH<sub>3</sub>)<sub>5</sub>Co<sub>3</sub>]Cl is
  - Pentaammine carbonato cobalt (III) chloride **(1)**
  - (2)Carbonato pentaammine cobalt (III) chloride
  - (3)Chloro pentaammine cobalt (III) carbonate
  - Pentaammine carbonato cobalt (II) chloride
- For a d<sup>6</sup> system with an octahedral symmetry, the difference between CFSE for high spin and low spin configurations amounts to  $(\Delta_0$  and P have their usual meaning)
  - $(1) \quad 2 \Delta_0 2P$
- (2)  $2 \Delta_0 4P$
- (3)  $2.6 \Delta_0 2P$
- (4)  $2.8 \Delta_0 P$

- 22. Silica readily dissolves in
  - (1) HF
- (2)HCl
- (3) HI
- (4) HNO<sub>3</sub>
- CFSE for a high spin octahedral system is zero. Its electronic distribution is
- $(1) \quad (t_{2g})^4 \; (e_g)^0 \quad (2) \quad (t_{2g})^6 \; (e_g)^3 \qquad \qquad (3) \quad (t_{2g})^4 \; (e_g)^2$
- (4)  $(t_{2g})^3 (e_g)^2$
- The CFSE for d<sup>4</sup> configuration for high spin complexes is
  - (1)  $-0.4 \Delta_0$
- $(2) \quad -0.6 \ \Delta_0$
- (3)  $-0.8 \Delta_0$
- $(4) -1\cdot 2 \Delta_0$
- 25. The most common oxidation state of lanthanides is
  - (1) +4
- (2) +3
- (3)
- (4) +7

- On alkylation of diborane, the product formed is
  - hexaalkyl diborane **(1)**

tetraalkyl diborane (2)

dialkyl diborane **(3)** 

- None of these **(4)**
- Among the following lanthanides, the smallest size is that of 27.
  - Cerium **(1)**
- (2)Dysprosium
- (3)Thulium
- (4) Ytterbium
- 28. The first actinide metal which resembles a lanthanide is
  - Neptunium (2)
    - **Americium**
- (3)Berkelium
- (4) Uranium

| 29. | The | principal | oxidation | state | of | thorium | is |
|-----|-----|-----------|-----------|-------|----|---------|----|
|-----|-----|-----------|-----------|-------|----|---------|----|

- (1) +4
- (2) +3
- (3) +2
- (4) +5

#### 30. Fe(CO)<sub>5</sub> has a geometry which is

(1) octahedral

(2) trigonal bipyramidal

(3) square pyramidal

(4) None of these

## 31. Unsaturated hydrocarbons can be separated from alkanes by the complex formed between this metal and the unsaturated hydrocarbon.

- (1) Pt
- (2) Ag
- (3) Au
- (4) Zn

#### 32. Which of the halide ions causes larger d orbital splittings?

- (1) Cl<sup>-</sup>
- (2) I<sup>-</sup>
- (3) Br<sup>-</sup>
- (4)  $F^-$

## 33. The infra-red absorption spectrum of $Fe_2(CO)_9$ indicates how many types of carbonyl groups in the complex?

- (1) 1
- **(2)** 2

(3) 3

(4) Not clear

### 34. The temperature above which an antiferromagnetic complex shows paramagnetic behaviour is called

(1) Curie temperature

- (2) Neel temperature
- (3) Critical temperature
- · (4) Theta temperature

# **35.** When an alkene molecule complexes with a metal, the alkene is susceptible to attack by

(1) Electrophiles

(2) Nucleophiles

(3) Both (1) and (2)

(4) None of these

#### 36. The complex $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ are respectively

- (1) diamagnetic, paramagnetic
- (2) diamagnetic, diamagnetic
- paramagnetic, diamagnetic
- (4) paramagnetic, paramagnetic

SPACE FOR ROUGH WORK

- According to Curie's law, the paramagnetic susceptibility  $\chi_M^{corr}$ 37. absolute temperature as
  - $\chi_M^{corr} \propto T$ (1)

- $(2) \quad \chi_{\mathbf{M}}^{\mathbf{corr}} \propto \frac{1}{\mathbf{T}}$
- (3)does not depend on temperature
- (4) None of the above
- The catalyst formed by the combination of TiCl<sub>4</sub> and Al(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub> is called the 38.
  - (1)Wilkinson's catalyst
- Ziegler Natta catalyst (2)

(3)Lazier catalyst

- **(4)** Nishimura catalyst
- 39. A polynuclear metal carbonyl which does not contain a bridging carbonyl group is
  - Fe<sub>2</sub>(CO)<sub>0</sub>

(2)  $Co_4(CO)_{12}$ 

 $Co_2(CO)_8$ (3)

- (4) All of the above
- The splitting energy  $\Delta_0$  increases in the order 40.
  - $\operatorname{CrCl}_{6}^{3-} < \operatorname{Cr}(\operatorname{CN})_{6}^{3-} < \operatorname{Cr}(\operatorname{NH}_{3})_{6}^{3+} \quad (2) \quad \operatorname{CrCl}_{6}^{3-} < \operatorname{Cr}(\operatorname{NH}_{3})_{6}^{3+} < \operatorname{Cr}(\operatorname{CN})_{6}^{3-} < \operatorname{Cr}(\operatorname{NH}_{3})_{6}^{3+} < \operatorname{Cr}(\operatorname{NH}_{3})_{6}^{3+} < \operatorname{Cr}(\operatorname{CN})_{6}^{3-} < \operatorname{Cr}(\operatorname{CN})_{6}^{3-} < \operatorname{Cr}(\operatorname{NH}_{3})_{6}^{3-} < \operatorname{Cr}(\operatorname{CN})_{6}^{3-} < \operatorname{Cr}(\operatorname{CN})_{6}$
  - $\operatorname{Cr}(\operatorname{NH}_3)_6^{3+} < \operatorname{Cr}(\operatorname{CN})_6^{3-} < \operatorname{Cr}\operatorname{Cl}_6^{3-} \quad (4) \quad \operatorname{Cr}(\operatorname{NH}_3)_6^{3+} < \operatorname{Cr}\operatorname{Cl}_6^{3-} < \operatorname{Cr}(\operatorname{CN})_6^{3-}$
- 41. The condition that arises due to excessive intake of iron to toxic level is
  - (1)Hemochromatosis

(2)**Transferrins** 

(3)Ovotransferrins

- Lactoferrin (4)
- The rate of hydrolysis of ATP by an active ion pump is directly related to 42.
  - (1) concentration of Na+ ions
  - concentration of K+ ions
  - concentration of Mg+2 ions (3)
  - concentration of Na+ and K+ ions in presence of Mg+2
- 43. The acid or base property of a substance is not inherent in the substance itself, is the limitation of
  - Arrhenius concept

(2)Bronsted – Lowry concept

Protonic concept

Auto-ionisation concept **(4)** 

Student Bounty.com

- According to Bronsted concept, the basicity of the anions derived from CH<sub>4</sub>, NH<sub>3</sub>, H<sub>2</sub> 44. and HF is in the order of
  - (1)  $F^- > OH^- > NH_2^- > CH_3^-$
- (2)  $CH_3^- > NH_2^- > F^- > OH^-$
- $F^- > OH^- > CH_3^- > NH_2^-$
- (4)  $CH_3^- > NH_2^- > OH^- > F^-$
- Which of the following are Lewis acids and Lewis bases? 45.

H+, SO<sub>3</sub>, phenol, H<sub>2</sub>O, ROH

- Acids: H<sup>+</sup>, SO<sub>3</sub>, phenol Bases: - H2O, ROH
- (2) Acids:  $-H^+$ ,  $SO_3$ ,  $H_2O$ Bases: - Phenol, ROH
- Acids: H+, ROH (3)Bases: - Phenol, H<sub>2</sub>O, SO<sub>3</sub>
- (4) All are acids
- 46. When acetic acid (CH<sub>3</sub>COOH) is dissolved in liq. NH<sub>3</sub> (ammonia)
  - **(1)** it behaves as strong base
  - it behaves as strong acid
  - (3)neutralisation reaction take place
  - liq. NH<sub>3</sub> (ammonia) behaves as an acid
- When KNH<sub>2</sub> is mixed with liquor ammonia (NH<sub>3</sub>) solution of silver nitrate (AgNO<sub>3</sub>), the silver (Ag) precipitates as
  - (1)nitrate salt (2)
    - imide salt
- **(3)** solid metal
- (4) amide salt
- The inorganic salts containing highly charged ions like oxides, hydroxides, sulphides 48. are practically
  - **(1)** soluble in liq. SO<sub>2</sub>

- (2) soluble in liq. NH<sub>3</sub>
- insoluble in liq. NH<sub>3</sub> and liq. SO<sub>2</sub> (4) soluble in both liq. SO<sub>2</sub> and liq. NH<sub>3</sub>
- Non-ionising solvents have 49.
  - high dielectric constant and high dipole moment
  - low dipole moment and high dielectric constant (2)
  - low dipole moment and low dielectric constant
  - **(4)** high polarity

SHIIDENH BOUNTY. COM At constant temperature, the volume of a fixed mass of a gas is inversely pro-**50.** to its pressure, is

**(1)** Charles' law (2)Einstein's law

(3)Boyle's law Pressure-Temperature law

The unit of 'a', the van der Waal's constant is 51.

atm lit mol<sup>-1</sup> (1)

atm lit<sup>-1</sup> mol<sup>-1</sup> (2)

atm lit2 mol-2 (3)

(4) atm  $lit^{-1} mol^{-2}$ 

The inter-relationship between the average velocity ( $\bar{\nu}$ ) and RMS velocity ( $\mu$ ) can be **52.** given as

 $(1) \quad \overline{v} = \mu \times 0.9213$ 

(2) $\bar{\nu} = \mu \times 9.213$ 

 $\mu = \bar{\nu} \times 0.923$ 

 $\mu = \bar{\nu} \times 9.213$ (4)

53. The gases which have their critical temperature above or just below the ordinary atmospheric temperature are liquified by

**(1)** Linde's method

Faraday's method (2)

(3)Claude's method Maxwell's method

54. Inter-molecular forces in liquids are essentially

- (1)neutral
- (2)electrical
- (3)strong
- (4) magnetic

The liquid crystals in which molecules are arranged in parallel to each other but they 55. are free to slide or roll individually, are known as

- smectic liquid crystals **(1)**
- cholesteric liquid crystals (2)
- nematic liquid crystals (3)
- crystalline liquid crystals **(4)**

In simple cubic lattice of NaCl, each particle is surrounded by **56.** 

- **(1)** eight other particles
- (2)four other particles

six other particles **(3)** 

ten other particles **(4)** 

- 57. The movement of sol particles under an applied electric field is called
  - (1) Electrofiltration

- (2) Electro-osmosis
- (3) Electrokinetic phenomenon
- (4) Electrophoresis
- 58. An emulsion is a colloidal solution of a
  - (1) solid dispersed in liquid
- (2) liquid dispersed in another liquid
- (3) liquid dispersed in solid
- (4) None of the above
- 59. The function of alum used for purification of water is to
  - (1) coagulate the colloidal particles
- (2) coagulate the sol particles
- (3) emulsify the sol particles
- (4) emulsify the colloidal particles
- 60. The solution which does not show Tyndall effect is
  - (1) suspension

(2) colloidal solution

(3) true solution

- (4) emulsion
- 61. The unit of specific reaction rate constant for zero order reaction is
  - (1)  $\sec^{-1}$

(2) mol dm<sup>-3</sup>

(3)  $\text{mol dm}^{-3} \text{ sec}^{-1}$ 

- (4)  $mol dm^3 sec^{-1}$
- 62. A graph of  $\log \frac{\Delta}{(\Delta \mathbf{x})}$  vs. t for a reaction is straight line graph with slope = -0.00486. The value of K (specific rate constant) is
  - (1)  $-0.00486 \text{ min}^{-1}$

(2)  $-0.001119 \text{ min}^{-1}$ 

(3)  $0.001119 \text{ min}^{-1}$ 

- (4)  $0.01119 \text{ min}^{-1}$
- 63. The half-time of a first-order reaction is 90 days. Starting with a unit concentration of a reactant, after 360 days, the amount of reactant remaining is
  - (1)  $\frac{1}{16}$
- (2)  $\frac{1}{8}$
- $(3) \quad \frac{1}{4}$

(4)  $\frac{1}{2}$ 

- Stilldent Bounty.com In which of the following processes does the entropy decrease?
  - **(1)** Dissolution of NaCl in water
  - **(2)** Evaporation of water
  - Conversion of CO<sub>2</sub> (g) into dry ice
  - **(4)** Spilling of food-grains on the ground
- The Gibbs Helmholtz equation is 65.

(1) 
$$\Delta G = \Delta H + T \left[ \frac{d(\Delta G)}{dT} \right]_{P}$$

(2) 
$$\left[\frac{d(\Delta G)}{dT}\right]_{P} = \frac{-\Delta H^{0}}{T^{2}}$$

(3) 
$$\left[\frac{d(\Delta G/T)}{d(\frac{1}{T})}\right]_{P} = \Delta H^{0}$$

(4) 
$$\left[\frac{d(\Delta H/T)}{dT}\right]_{P} = \Delta G$$

- 66. The gas which does not show Joule - Thomson effect is
  - **(1)** CO,
- **(2)** Н,
- **(3)**  $N_2$
- (4) NH<sub>3</sub>
- 67. The number of degrees of freedom for the following equilibrium reaction are  $CaCO_3$  (s)  $\rightleftharpoons$  CaO (s) +  $CO_2$  (g)
  - **(1)** zero
- **(2)** one
- (3)two
- (4) three
- In the phase diagram for water system, the number of curves representing monovariant 68. system are
  - **(1)** one
- (2)two
- **(3)** three
- (4) four
- **69**. In the phase diagram of the CO<sub>2</sub> system, the fusion curve slopes away slightly from pressure axis. This is due to the fact that
  - the molar volume of liquid CO<sub>2</sub> is larger than molar volume of solid CO<sub>2</sub>
  - the molar volume of liquid CO2 is less than molar volume of solid CO2 **(2)**
  - (3) the pressure is high
  - this is due to the effect of sublimation curve

70. The relation between  $K_p$  and  $K_c$  for the reaction

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$
 is

(1)  $K_0 = K_c$ 

 $(2) \quad \mathbf{K}_{\mathbf{p}} = \mathbf{K}_{\mathbf{c}} (\mathbf{RT})^2$ 

(3)  $K_p = K_c (RT)^{-2}$ 

- $(4) \quad \mathbf{K}_{\mathbf{p}} = \frac{1}{\mathbf{K}_{\mathbf{c}}}$
- 71. At constant pressure, upon addition of He (g) at the equilibrium point in the reaction  $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$

the degree of dissociation of

(1) PCl<sub>5</sub> will decrease

(2) PCl<sub>5</sub> will increase

(3) PCl<sub>3</sub> will increase

- (4) Cl<sub>2</sub> will increase
- 72. Which of the following expressions is valid for a reversible process in a state of equilibrium?
  - (1)  $\Delta G = -RT \ln K_p$

(2)  $\Delta G = RT \ln K_{D}$ 

(3)  $\Delta G^0 = -RT \ln K_{\mathbf{p}}$ 

- (4)  $\Delta G^0 = RT \ln K_p$
- 73. The disturbance in the equilibrium of NO and NO2 results into
  - (1) acid rain

(2) formation of smoke

(3) green house effect

- (4) photochemical smog
- 74. The type of cancer that is not caused due to expoure to ultraviolet radiations is
  - (1) Carcinoma
- (2) Squamous
- (3) Leukemia
- (4) Melanoma
- 75. The gas that does not cause green house effect is
  - (1) CO<sub>2</sub>
- (2) CFC
- (3) N<sub>2</sub>O
- (4) NO<sub>2</sub>
- 76. The relative stabilities of the carbocations a, b, c and d are in the order:

a. 
$$H_3C - C \longrightarrow CH_2$$

b. 
$$\bigcirc$$
  $\stackrel{\oplus}{\subset}$   $H_2$ 

c. 
$$H_3C \longrightarrow \overset{\oplus}{C}H_2$$

d. 
$$H_3C - \overset{\oplus}{C}H_2$$

(1) d < b < c < a

(2) b < d < c < a

(3) d < b < a < c

(4) b < d < a < c

- 77. The hybridisation of N atom in  $NH_3$  is  $sp^3$ . The bond angle H-N-H is
  - (1) 109·5°
- (2)  $107.3^{\circ}$
- (3) 120°
- (4) 180
- **78.** The boiling point of which of the following compounds is unusually higher as compared to the other three?
  - (1) Ethanol

(2) Propane

(3) Dimethyl ether

- (4) Ethyl Fluoride
- 79. The reaction of cis-2-butene with K-tert butoxide will yield the following cycloadduct.





- (4) H<sub>3</sub>C H
- 80. Which of the statements given below about the reactive intermediate methylene are correct?
  - a. Methylene is formed by photolysis of diazomethane.
  - b. Methylene can exist in two forms, singlet and triplet.
  - c. Singlet methylene is more stable than triplet methylene.
  - d. When methylene is generated in presence of alkene, cyclopropanes are formed.
  - (1) a, b and d
- (2) a, b and c
- (3) c and d
- (4) a, c and d
- 81. The compounds  $(H)^{H}$  Br and  $(H)^{H}$  are a pair of  $(H)^{H}$  are a pair of
  - (1) enantiomers

- (2) diastereomers
- (3) conformational isomers
- (4) constitutional isomers

82. Which of the following isomers may be labelled as an E isomer?

(1) 
$$\begin{array}{c} H \setminus CH(CH_3)_2 \\ C = C \\ D \setminus CH = CH_2 \end{array}$$

(3) 
$$C = C$$

$$OHC \longrightarrow CH_2CH_3$$

$$C = C$$

$$CH = CH_2$$

$$(4) \qquad \begin{array}{c} \text{H}_2\text{N} \\ \text{C} = \text{C} \\ \text{O}_2\text{N} \end{array} \qquad \begin{array}{c} \text{CH}_2\text{OCH}_3 \\ \text{CH}_2\text{OC}_2\text{H}_5 \end{array}$$

83. The product of the following reaction is

- (1) 1-bromo-3-chlorobutane
- (2) threo-2-bromo-3-chlorobutane
- (3) erythro-2-bromo-3-chlorobutane
- (4) A mixture of threo-2-bromo-3-chlorobutane + erythro-2-bromo-3-chlorobutane

84. The absolute configuration of the asymmetric centres in the given molecule is

$$\begin{array}{c|c} CH_3 \\ Br & \begin{array}{c|c} 2 \\ H \\ \end{array} \\ H & \begin{array}{c|c} 3 \\ CH_3 \end{array} \\ \end{array}$$

- (1) 2R, 3R
- (2) 2R, 3S
- (3) 2S, 3R
- (4) 2S, 3S

SPACE FOR ROUGH WORK

Student Bounty.com The conformation of cyclohexane in Newman style projection is that of 85.



**(1)** Boat form

(2)Chair form

(3)Twist Boat form **(4)** Half Chair form

Match the following: 86.

Organic compounds

λmax (nm) values of absorption (uv-vis)

Benzene a.

270

Nitrobenzene b.

ii. 261

p-dinitrobenzene c.

iii. 254

a-i (1)b-ii c-iii (2)a-ii b-iii c-i

(3)a-iii b-ii c-i

- **(4)** a-iii b-i c-ii
- The IR spectrum of an organic compound shows absorption bands at 3050 cm<sup>-1</sup>,  $2740 \text{ cm}^{-1}$ ,  $1700 \text{ cm}^{-1}$ ,  $1600 \text{ cm}^{-1}$  and  $1460 \text{ cm}^{-1}$ . The compound would most likely be
  - (1) Phenol

Benzaldehyde (2)

(3) Benzophenone

- **(4)** Acetophenone
- A compound with molecular formula C9H10O gives a strong absorption band at 88. 1680 cm<sup>-1</sup> and signals in the NMR spectrum as follows:

a triplet at 1.2  $\delta$  (3H); a quartet at 3.0  $\delta$  (2H) and a multiplet at 7.4 – 8.0  $\delta$  (5H). The given compound is

- C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>CH<sub>2</sub>CHO **(1)**
- $\begin{matrix} & & O \\ \parallel & \parallel \\ C_6H_5-CH_2-C-CH_3 \end{matrix}$ **(2)**
- (3)
- **(4)**

**(1)** Coupling constants (2)Splitting pattern

(3) Chemical shifts **(4)** All of the above

From the pure rotation spectrum of HF molecule, information can be obtained about

**(1)** force constant the internuclear distance

hydrogen bonding (3)

bond strength

2-pheny-1-propanol can be obtained from 2-phenyl propene by 91.

- reaction with ozone followed by hydrolysis **(1)**
- hydroboration followed by oxidation with H<sub>2</sub>O<sub>2</sub>
- **(3)** oxymercuration followed by reduction
- reaction with  ${\rm KMnO_4}$  under alkaline conditions

92. Which of the following alkyl halides will give methylene cyclohexane in good yield by an E<sub>2</sub>-elimination?

93. The products obtained on treatment of 2-methyl-2-butene with ozone followed by aqueous  $H_2O_2$  would be

**(1)** Acetone + Acetone

- Acetone + Acetaldehyde
- Acetone + Acetic acid
- Acetone + Formaldehyde **(4**)

SPACE FOR ROUGH WORK

is obtained in the Diels - Alder reaction of

(1) 
$$\begin{array}{c} CH_3 \\ + \\ H \end{array}$$
  $\begin{array}{c} COOCH_3 \\ \\ COOCH_3 \end{array}$ 

ained in the Diels – Alder reaction of

$$CH_3$$
 $H_3COOC$ 
 $H$ 
 $COOCH_3$ 

$$(3) \begin{array}{c|c} CH_3 & COOCH_3 \\ & | \\ & + & ||| \\ & | \\ & COOCH_3 \end{array}$$

$$(4) \qquad \begin{array}{c} \text{CH}_3 \\ + \\ \text{H}_3\text{COOC} \end{array} \qquad \begin{array}{c} \text{H} \\ \text{COOCH}_3 \end{array}$$

- 95. The product obtained when cyclohexene is brominated using N-bromosuccinimide is/are
  - **(1)** cis-1,2-dibromo cyclohexane
  - **(2)** trans-1,2-dibromo cyclohexane
  - cis-1,2-dibromo cyclohexane + trans-1,2-dibromo cyclohexane (3)
  - **(4)** 3-bromo cyclohexene
- According to Huckel's rule, the ring is said to be aromatic if it contains 96.
  - 4, 8, 12 etc. electrons (1)
- 2, 6, 10, 14 etc. electrons
- 1, 3, 5, 7 etc. electrons
- 5, 8, 12 etc. electrons **(4)**
- 97. In electrophilic substitution, reaction of aromatic rings, if an electrophile is a positive ion, it gives
  - (1) carbocation

(2)carboanion

 $\pi$ -complexes

- None of the above
- 98. When aromatic rings are reduced by Na in liq. NH3 in presence of alcohol, 1,4 addition of hydrogen takes place and non-conjugated cyclohexadienes are produced. This reaction is called
  - Michael reaction (1)

(2)Knoevenagel reaction

Birch reduction

**(4)** Friedel - Crafts reaction

- 99. When glycols are treated with acids, they can be rearranged to give
  - (1) acetic acid

- (2) alcohols
- (3) aldehydes or ketones
- (4) tetra-substituted glycols
- 100. To obtain a good yield of aldehyde or ketone under mild conditions from 1,2 glycol, its oxidative cleavage is carried out with
  - (1)  $K_2Cr_2O_7$
- (2)  $KMnO_4$
- (3) ZnO
- (4) HIO<sub>4</sub>
- 101. The reaction in which phenolic esters can be rearranged by heating with Friedel Crafts catalyst to o- and p- acylphenols is known as
  - (1) Claisen rearrangement
- (2) Fries rearrangement

(3) Cleavage

- (4) Gabriel rearrangement
- 102. In the self redox reaction of a compound having no α-hydrogen atom, in which one molecule of an aldehyde is oxidised to carboxylic acid and other is reduced to alcohol is known as
  - (1) Cannizzaro's reaction
- (2) Baeyer Villiger reaction
- (3) Wittig and Mannich reaction
- (4) Houben Hoesch reaction
- 103. The reduction of aldehydes to primary alcohol and ketones to secondary alcohol can be carried out in presence of reducing agent such as
  - (1) alkaline KMnO<sub>4</sub>

(2) PCl<sub>4</sub>

(3) LiAlH<sub>4</sub>

(4) trimethyl aluminium

104. 
$$R-C-R' \xrightarrow{Zn-Hg} R-CH_2-R'$$

The above reaction is known as

- (1) Wolff Kishner reduction reaction (2)
  - (2) Skraup synthesis
- (3) Gatterman synthesis
- (4) Clemmensen reduction reaction
- 105. α, β-unsaturated aldehydes can be oxidized to carboxylic acid without disturbing the double bond by using oxidizing agent such as
  - (1) MgO

(2) ZnO

(3) sodium chlorite

- (4) alkaline KMnO<sub>4</sub>
- 106. The atom which gets halogenated in the process of halogenation of carboxylic acid with PCl<sub>3</sub> is
  - (1) para-hydrogen

(2) ortho-hydrogen

(3) meta-hydrogen

(4) α-hydrogen

SPACE FOR ROUGH WORK

|      |             |                                                                                                  |                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|-------------|--------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RNM  |             |                                                                                                  | 20               | e esterified most readily ? $(CH_3)_2CHCOOH$ $CH_3 > CHCH_2COOH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 107. | Whi         | ch of the following carboxylic aci                                                               | ds can be        | e esterified most readily?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | (1)         | СН <sub>3</sub> СООН                                                                             | (2)              | (CH <sub>3</sub> ) <sub>2</sub> CHCOOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | (3)         | $(CH_3)_3$ CCOOH                                                                                 | (4)              | $\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \end{array} \hspace{-0.5cm} \hspace{-0cm} \hspace{-0.5cm} \hspace$ |
| 108. |             | en a mixture of absolute alcohol<br>c. H <sub>2</sub> SO <sub>4</sub> , the product that distill |                  | ial acetic acid is heated in presence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | (1)         | acetoacetic ester                                                                                | (2)              | ethyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | (3)         | ethyl acetoacetate                                                                               | (4)              | methyl acetoacetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 109. | Dec         | arboxylation of carboxylate ion o                                                                | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | (1)         | $\mathbf{S}_{\mathbf{E_1}}$ (2) $\mathbf{S}_{\mathbf{E_2}}$                                      | (3)              | $S_{N_1}$ (4) $S_{E_1}$ or $S_{E_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | (1)<br>(3)  | rst treated with<br>guanidine<br>potassium phthalimide                                           | (2)<br>(4)       | (PhS) <sub>2</sub> NLi<br>alkyl bromides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |             |                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 111. | (1)         | en primary aromatic amines are Diazonium salt                                                    |                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | (3)         | Nitro amines                                                                                     | (2)<br>(4)       | Heterocyclic amines Amide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 112. | Pha (1) (3) | se transfer catalysts are salts in<br>polar substituent groups<br>non-polar substituent groups   | which on (2) (4) | ne of the ions (usually the cation) has methyl group sulphonated benzene ring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 113. |             | en aryhydrazones are treated wi                                                                  | th a catal       | lyst such as ZnCl <sub>2</sub> , an indole is formed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| •    | (1)         | $H_2O$ (2) $CH_4$                                                                                | (3)              | CH <sub>3</sub> OH (4) NH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 114. | -           | nolines are commonly synthesized<br>ch aniline is treated with glycero                           |                  | thod known as the Skraup synthesis, in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | (1)         | high pressure                                                                                    | (2)              | alkaline conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | (3)         | normal temperature                                                                               | (4)              | acidic conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |             |                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

- Baeyer Villiger reaction
- **(2)** Bischler – Napieralski synthesis

Mannich reaction (3)

**(4)** None of the above

116. Ethyl acetate undergoes a condensation reaction when treated with sodium ethoxide to give

$$(1) \qquad \begin{array}{ccc} & O & O \\ \parallel & \parallel \\ & CH_3-C-CH_2-C-OC_2H_5 \end{array}$$

$$(3) \quad CH_3 - C - CH_2 - C - CH_3$$

117. Product (A) obtained in the following reaction is

$$(1) \qquad \begin{array}{c} O \\ \text{CHCH}_2\text{CH}_3 \end{array}$$

$$(2) \qquad \begin{array}{c} \text{O} \\ \text{CH}_2\text{CH}_2\text{CHO} \end{array}$$

$$\begin{array}{ccc}
O & O \\
II & II \\
CH_2 - C - CH_3
\end{array}$$

$$(4) \qquad CH = CH - CHO$$

118. Complete the following reaction:

$$\overbrace{S \underset{\ominus}{\overset{S}{\underset{\text{def}}{\bigcirc}}}}^{S_{\bigoplus}} \xrightarrow{(i)} \frac{\text{CH}_3\text{CH}_2\text{CH}_2\text{Br}}{(ii)} \xrightarrow{\text{HgCl}_2, \text{CH}_3\text{CN}, \text{H}_2\text{O}} ?$$

CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CHO **(1)** 

- (2) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH
- CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH
- (4) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CN

SPACE FOR ROUGH WORK

Student Bounty.com 119. When glucose is first treated with excess CH<sub>3</sub>I and then subjected to acid hyd the sole - OH group present on the hydrolysed product is present on which C ato

- (1) C-2
- (2) C-3
- (3) C-4

120. Starch is a polymer of

(1) α-D glucose

- β-D glucose (2)
- $\alpha$ -D glucose +  $\beta$ -D glucose
- (4) α-D fructose

**121.** Match the following:

#### Disaccharides

- Maltose a.
- b. Sucrose
- c. Lactose
- (1)a-ii
- (3) a-ii b-i
- b-iii

c-iii

c-i

- Constituent Monosaccharides
- i. glucopyranose + galactopyranose
- ii. glucopyranose + glucopyranose
- iii. glucopyranose + fructopyranose
- **(2)** a-i b-ii c-iii
- **(4)** a-iii b-i ç-ii

122. The conversion of  $\alpha$  and  $\beta$  glucopyranose into an equilibrium mixture of both is termed as

**(1)** inversion (2)racemisation

(3)mutarotation **(4)** anomerisation

123. The tertiary structure of protein describes

- the sequence of amino acids in the chain (1)
- (2)location of all disulphide bridges
- (3)regular conformations assumed by segments of protein backbone
- the three-dimensional structure of entire polypeptide

124. When two amino acids are heated to form dipeptide, four dipeptides are obtained. To avoid this, in classical peptide synthesis, amino group of one amino acid is protected using A, while the acid group of the same amino acid is activated using reagent B. The reagents A and B are

- (1) A = tBOC, B = DCC
- (2)  $A DCC, B SOCl_2$
- A DCC, B tBOC
- (4) A = tBOC,  $B = SOCl_2$

| A    |            |                                 |                   |                               | 23                     |                                                   |                              | Stilden          |
|------|------------|---------------------------------|-------------------|-------------------------------|------------------------|---------------------------------------------------|------------------------------|------------------|
| 125. | 1-flu      | uoro-2,4-dinit<br>ction and sub | tro ber<br>jected | nzene by car<br>to hydrolysis | polypept<br>rrying out | ide Val-Phe-C<br>t a nucleophil<br>lucts obtained | Hy-Ala is<br>ic aroma<br>are | s labelled       |
|      | The        | Dinitropher<br>C-terminal       | -                 | + Phe + Gly                   |                        |                                                   |                              |                  |
|      | (1)        | Ala; Val                        | (2)               | Val; Ala                      | (3)                    | Phe; Val                                          | (4)                          | Gly; Ala         |
| 126. |            | eleic acids are                 | _                 | •                             | trands of              | nucleotide subi                                   | units link                   | ed to each othe  |
|      | (1)        | 3'-OH grou                      | p of on           | e nucleotide                  | to 4'-OH               | group of anoth                                    | er nucleo                    | tide             |
|      | <b>(2)</b> | 3'-OH grou                      | p of on           | e nucleotide                  | to 5'-OH               | group of anoth                                    | er nucleo                    | tide             |
|      | (3)        | 2'-OH grou                      | p of on           | e nucleotide                  | to 4'-OH               | group of anoth                                    | er nucleo                    | tide             |
|      | <b>(4)</b> | 2'-OH grou                      | p of on           | e nucleotide                  | to 5'-OH               | group of anoth                                    | er nucleo                    | tide             |
| 127. |            | ch of the fo                    |                   |                               | properties             | may not be                                        | achieved                     | by the use of    |
|      | (1)        | Resistance                      | to crac           | king                          |                        |                                                   |                              |                  |
|      | <b>(2)</b> | Control ove                     | r confi           | guration of d                 | ouble bon              | ds in the polyn                                   | ner                          |                  |
|      | (3)        | Cross-linkir                    | ng of p           | olymers                       |                        |                                                   |                              |                  |
|      | (4)        | Conducting                      | polym             | er                            |                        |                                                   |                              |                  |
| 128. | The        | •                               |                   | nich bear elec                | ctron with             | drawing group                                     | s are mo                     | st susceptible t |
|      | (1)        | Cationic                        |                   |                               | (2)                    | Anionic                                           |                              |                  |
|      | (3)        | Free radica                     | l                 |                               | (4)                    | Condensation                                      | 1                            |                  |
| 129. |            |                                 |                   |                               |                        | ormed by the O     -O-C-NH.                       | reaction                     | of a diol wit    |
|      |            |                                 | DITUALITY         | s the function                |                        |                                                   |                              |                  |
|      | (1)        | Polyamides                      |                   |                               | <b>(2)</b>             | Polyurethane                                      | s                            |                  |

SPACE FOR ROUGH WORK

**(3)** 

Polyanilides

P.T.O.

**(4)** 

Polyisocyanates

|      |                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •. •                                                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                                 |                                                                               | S.                                                    |                         |
|------|-----------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------|
| RNM  |                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        | 2                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                        |                                                                 |                                                                               | resorcinol                                            | 2                       |
| 130. | Mat                               | ch the fo                                                                                   | llowi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ng:                                                                                                                    |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                                 |                                                                               |                                                       | 40                      |
|      |                                   | Synth                                                                                       | etic D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>)ye</u>                                                                                                             |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pre                                                                    | paration                                                        | n from                                                                        |                                                       |                         |
|      | a.                                | Malach                                                                                      | ite Gı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | reen                                                                                                                   |                                                                                     | i.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        | alic anh<br>del – Cr                                            | ydride +<br>afts)                                                             | - resorcinol                                          |                         |
|      | <b>b.</b>                         | Crystal                                                                                     | Viole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | et                                                                                                                     |                                                                                     | ii.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                        | aldehyd<br>lensatio                                             |                                                                               | ethyl anilin                                          | e                       |
|      | c.                                | Fluores                                                                                     | cein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                        |                                                                                     | iii.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        | naldehyo<br>lensatio                                            |                                                                               | ethyl anilin                                          | e                       |
|      | (1)                               | a-ii                                                                                        | b-i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c-iii                                                                                                                  |                                                                                     | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a-i                                                                    | b-iii                                                           | c-ii                                                                          |                                                       |                         |
|      | (3)                               | a-iii                                                                                       | b-ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c-i                                                                                                                    |                                                                                     | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a-ii                                                                   | b-iii                                                           | c-i                                                                           |                                                       |                         |
| 131  | The                               | princ                                                                                       | ipal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | synthesis                                                                                                              | of                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        | i                                                               | involves                                                                      | oxidation                                             | n of                    |
| .01, |                                   |                                                                                             | ne-2-s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sulphonic ac                                                                                                           | id with so                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                                 | centrated                                                                     | l NaOH sol                                            | ution.                  |
|      | (1)<br>(3)                        | Indigo<br>Methyl                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        | id with so                                                                          | (2)<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aliza                                                                  |                                                                 |                                                                               | l NaOH sol                                            | ution.                  |
|      | (1)<br>(3)<br>Con-<br>on t<br>(1) | Indigo Methyl sider the he basis Resona states.                                             | orange folloof Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ge<br>wing statem<br>lence Bond<br>mong charge                                                                         | ents abou<br>theory. W                                                              | (2) (4) t expl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Aliza Phen anatio f these uces er                                      | n of cole<br>e is <b>not</b>                                    | our of or<br>true ?                                                           | ganic comp                                            | ounds<br>xcited         |
|      | (1) (3) Cont on t (1) (2)         | Indigo Methyl sider the he basis Resona states. Charge                                      | orange folloof Vance ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | wing statem<br>lence Bond<br>mong charge                                                                               | ents abou<br>theory. W<br>d structur<br>ribute less                                 | (2) (4)  t expl hich o es red to except                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aliza Phen anatio f these uces er                                      | n of cole is not nergies o                                      | our of or<br>true?<br>of both g                                               | ganic comp<br>round and e<br>ground sta               | ounds<br>xcited<br>te.  |
|      | (1)<br>(3)<br>Con-<br>on t<br>(1) | Indigo Methyl sider the he basis Resona states. Charge The lar                              | orange folloof Vance and stru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ge<br>wing statem<br>lence Bond<br>mong charge                                                                         | ents abou<br>theory. W<br>d structur<br>ribute less<br>of electro                   | (2) (4)  t expl hich of estred to excens inv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aliza Phen anatio f these uces er cited so                             | n of coloris not nergies of tate that                           | our of or<br>true?<br>of both ga                                              | ganic comp<br>round and e<br>ground sta               | ounds<br>xcited<br>te.  |
|      | (1) (3) Cont on t (1) (2)         | Indigo Methyl sider the he basis Resona states. Charge The lar energy The mo                | orange folloof Vance and structure extends of the contract of  | wing statem<br>lence Bond<br>mong charge<br>actures contr                                                              | ents abou<br>theory. W<br>d structur<br>ribute less<br>of electron<br>n ground      | (2) (4)  t expl hich o es red  to exe state a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aliza Phen anatio f these uces er cited so olved and ex molecu         | n of colore is not tate that in resorted state and g            | our of or<br>true?<br>of both go<br>in to the<br>nance, thate.                | ganic comp<br>round and e<br>ground sta<br>ne smaller | ounds xcited te. is the |
|      | (1) (3)  Conton t (1) (2) (3) (4) | Indigo Methyl sider the he basis Resona states. Charge The lar energy The mocharged molecul | e follo<br>of Va<br>nce ar<br>d stru<br>ger t<br>differ<br>re ext<br>l stru<br>les.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | wing statem<br>lence Bond<br>mong charge<br>actures contr<br>he number<br>ence betwee                                  | ents about theory. When the description of electron on ground on jugation is the wa | (2) (4)  t expl hich of estred to excuss investate and excuss in a reconstruction of the excussion of the ex | Aliza Phen anation f these uces en cited si olved and ex molecu gth of | n of coloris not nergies of tate that in resorted state the pho | our of or<br>true?<br>of both gr<br>in to the<br>nance, thate.<br>greater the | ganic comp<br>round and e<br>ground sta<br>ne smaller | ounds xcited te. is the |
|      | (1) (3)  Conton t (1) (2) (3) (4) | Indigo Methyl sider the he basis Resona states. Charge The lar energy The mocharged molecul | orange follo of Vance and structure extends of the structure of the struct | wing statem<br>lence Bond<br>mong charge<br>actures contr<br>he number<br>ence betwee<br>tended the c<br>cture, longer | ents about theory. When the description of electron on ground on jugation is the wa | (2) (4)  t expl hich of estred to excuss investate and excuss in a reconstruction of the excussion of the ex | Aliza Phen anatio f these uces er cited s olved and ex molecu gth of   | n of coloris not nergies of tate that in resorted state the pho | our of or<br>true?<br>of both gr<br>in to the<br>nance, thate.<br>greater the | ganic comp<br>round and e<br>ground sta<br>ne smaller | ounds xcited te. is the |

- 134. Which of the following cannot be termed as a green solvent?
  - (1) Supercritical CO<sub>2</sub>

- (2) Water
- (3) Carbon tetrachloride
- (4) Ionic solvent
- 135. Which of the following is a green reagent to carry out selective methylation of active methylene compound?
  - (1) Dimethyl sulphate

(2) Dimethyl carbonate

(3) Diazomethane

- (4) Methyl chloride
- 136. 'An electrolyte in solution need not necessarily be completely dissociated into ions; instead it may be only partially dissociated to yield ions in equilibrium with unionized molecules of the substance', is put forth by
  - (1) Kohlrausch's theory
- (2) Debye Huckel theory

(3) Arrhenius theory

- (4) Nernst theory
- 137. The conductance behaviour of strong electrolytes has been given by the Debye-Huckel-Onsager equation and it is given as

(1) 
$$\lambda_0 = \lambda_c - (A + B \lambda_0) \sqrt{c}$$

(2) 
$$\lambda_c = \lambda_o - (A + B \lambda_o) \sqrt{c}$$

(3) 
$$\lambda_c = \frac{\lambda_o - (A + B)\lambda_o}{\sqrt{c}}$$

(4) 
$$\lambda_c = \lambda_o - (A + B) \lambda_o \sqrt{c}$$

- 138. Ostwald's dilution law can be used to determine
  - (1) conductance of weak acid
  - (2) dissociation constant of strong acid
  - (3) molar conductivity at infinite dilution for a weak acid
  - (4) molar conductivity at infinite dilution for a weak base
- 139. The unique ions which show high velocity under a potential drop of one volt per centimeter are
  - (1) H<sup>+</sup> and OH<sup>-</sup>

(2)  $K^+$  and  $Cl^-$ 

(3)  $K^+$  and  $NO_3^-$ 

(4)  $NH_4^+$  and  $NO_3^-$ 

- Student Bounty.com 140. The electrode which is constructed by dipping metal electrode into its own ion is known as
  - **(1)** metal-insolule salt electrode
- **(2)** redox-electrode
- metal-metal ion electrode
- None of the above **(4)**
- 141. When solar cell is exposed to sunlight, the energy from sunlight excites electrons
  - from n-type silicon to the holes of the p-type silicon
  - from p-type silicon to the holes of the n-type silicon **(2)**
  - and the electrons transfer to p-type silicon through external circuits
  - and the electrons transfer from n-type silicon to external circuit
- 142. At 25°C, the pH of the solution can be calculated by measuring E<sub>cell</sub> of the cell so constructed by using saturated calomel electrode and quinhydrone electrode. The equation employed for the purpose is

(1) 
$$pH = \frac{0.4581 - E_{cell}}{0.052}$$

(2) 
$$pH = \frac{E_{cell} - 0.04581}{0.0591}$$

(3) pH = 
$$\frac{0.4581 - E_{cell}}{0.0591}$$

(4) 
$$pH = \frac{0.0591 - E_{cell}}{0.4581}$$

- 143. In cathodic protection of metal from corrosion, the current is leaked to the ground from any conductor and the current is known as
  - cathodic current **(1)**

over-voltage

(3)sacrificial current

- **(4)** stray current
- 144. The total energy operator is called as
  - Hermitian operator

(2)Hamiltonian operator

(3) Linear operator

- **(4)** Addition of operator
- 145. For a sound wave, as per the postulates of quantum mechanics, the wave function is a function of
  - **(1)** Temperature

Magnetic moment (2)

(3)Time

Energy

| A    |                                                         | 27                                     | ,           | represents                           |  |  |  |  |  |
|------|---------------------------------------------------------|----------------------------------------|-------------|--------------------------------------|--|--|--|--|--|
| 146. | In Schrodinger's wave equation, the symbol ψ represents |                                        |             |                                      |  |  |  |  |  |
|      | (1)                                                     | wavelength of the spherical wave       |             |                                      |  |  |  |  |  |
|      | <b>(2)</b>                                              | amplitude of the spherical wave        |             |                                      |  |  |  |  |  |
|      | (3)                                                     | frequency of the spherical wave        |             |                                      |  |  |  |  |  |
|      | (4)                                                     | None of the above                      |             |                                      |  |  |  |  |  |
| 147. |                                                         | s only the absorbed light radiations   | that        | are effective in producing a chemica |  |  |  |  |  |
|      | (1)                                                     | Beer's law                             | <b>(2</b> ) | Einstein's law                       |  |  |  |  |  |
|      | (3)                                                     | Grothus - Draper law                   | (4)         | Bunsen – Roscoe's law                |  |  |  |  |  |
| 148. | Whi                                                     | ich process stops as soon as the incid | ent ra      | adiation is cut off?                 |  |  |  |  |  |
|      | (1)                                                     | Fluorescence                           | <b>(2</b> ) | Phosphorescence                      |  |  |  |  |  |
|      | (3)                                                     | Chemiluminescence                      | (4)         | None of the above                    |  |  |  |  |  |
| 149. | Pho                                                     | tosensitizer is a substance which can  |             |                                      |  |  |  |  |  |
|      | (1)                                                     | take part in the chemical reaction     |             |                                      |  |  |  |  |  |
|      | (0)                                                     | only absorbs the radiant energy        |             |                                      |  |  |  |  |  |
|      | <b>(2</b> )                                             | only absorbs the radiant energy        |             |                                      |  |  |  |  |  |
|      | (3)                                                     | only transfers the radiant energy      |             |                                      |  |  |  |  |  |

150. In a Jablonski diagram depicting various photophysical processes, the non-radiative processes of intersystem crossing, internal conversion and vibrational relaxation are indicated by the

(1) Horizontal lines

(2) Vertical lines

(3) Wavy lines

(4) Diagonal lines

### सूचना - (पृष्ठ 1 वरुन पुढे....)

- Student Bounty.com प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रूपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतः बरोबर **(9)** परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

### नमुना प्रश्न

| Q. No. 201. | I congratula | ite you | your gra | and success. |
|-------------|--------------|---------|----------|--------------|
|             | (1) for      | (2) at  | (3) on   | (4) abou     |

ह्या प्रश्नाचे योग्य उत्तर "(3) on" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव खालीलप्रमाणे प्र.क्र. 201 समोरील उत्तर-क्रमांक "3" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

(2) प्रश्न क्र. 201. (1)

Pick out the correct word to fill in the blank:

अशा पद्धतीने प्रस्तृत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या प्रविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK