अभिन्यास्थाता , ननस्पतीआट्य चाक्की परीक्री

2011 परीक्षा दि: १

Code: RPM

परिक्रा दि: १२|२२/२५७ प्रश्नपुस्तिका क्रमांक BOOKLET No.

प्रश्नपुस्तिका

वेळ : 1 ½ (दीड) तास

चाळणी परीक्षा वनस्पतीशास्त्र विषयक ज्ञान एकूण प्रश्न : 150

एकूण गुण: 150

सूचना

(1) सदर प्रश्नपुस्तिकेत **150** अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून ध्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकड्न लगेच बदलून ध्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांतन विसरता बॉलपेनने लिहावा.

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपित्रकेवर विशिष्ट जागी उत्तरपित्रकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपित्रकेवरील सूचनेप्रमाणे तुमच्या उत्तरपित्रकेवर नमूद करावा. अशा प्रकारे उत्तरपित्रकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी ध्यावी. ह्याकिरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपित्रकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची अचूक उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांपध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

पर्यवेक्षकांच्या सूचनेविना हे सील उघडू नये

Peac-Ithian Liosia Medicinate District Con A SIII SPACE EDE BONGHE MORKING CON

			THE PARTY OF THE P					
•		3	Chlorophyta Chrysophyta					
Yel	llow-green algae belong to the	division	•					
(1)		(2)	Chlorophyta					
(3)	Xanthophyta	(4)	Chrysophyta					
	nich of the following algae emblance to the roots, leaves		plant body that bears a superficia					
(1)	Vaucheria	(2)	Ectocarpus					
(3)	Oedogonium	(4)	Sargassum					
Physiological anisogamy involves union of two of the following:								
Phy	ysiological anisogamy involves	uilloit of two	or the following .					
Phy (1)	ysiological anisogamy involves Similar gametes which are		of the following .					
		motile	of the following .					
(1)	Similar gametes which are Similar gametes which are	motile non-motile	ve non-motile gamete which are similar					
(1) (2)	Similar gametes which are Similar gametes which are	motile non-motile nd one passiv						
(1) (2) (3) (4)	Similar gametes which are Similar gametes which are One active motile gamete a	motile non-motile nd one passiv re motile	ve non-motile gamete which are similar					
(1) (2) (3) (4)	Similar gametes which are Similar gametes which are One active motile gamete a Dissimilar gametes which a	motile non-motile nd one passiv re motile	ve non-motile gamete which are similar					
(1) (2) (3) (4)	Similar gametes which are Similar gametes which are One active motile gamete a Dissimilar gametes which a	motile non-motile nd one passiv re motile chospermum	ve non-motile gamete which are similar					
(1) (2) (3) (4) The (1) (3)	Similar gametes which are Similar gametes which are One active motile gamete a Dissimilar gametes which a	motile non-motile nd one passivere motile chospermum (2) (4)	ve non-motile gamete which are similar is Haplobiontic type Diplontic type					
(1) (2) (3) (4) The (1) (3)	Similar gametes which are Similar gametes which are One active motile gamete a Dissimilar gametes which a e life cycle exhibited by Batra Diplohaplontic type Diplobiontic type	motile non-motile nd one passivere motile chospermum (2) (4)	ve non-motile gamete which are similar is Haplobiontic type Diplontic type					
(1) (2) (3) (4) The (1) (3)	Similar gametes which are Similar gametes which are One active motile gamete a Dissimilar gametes which a elife cycle exhibited by Batra Diplohaplontic type Diplobiontic type	motile non-motile nd one passivere motile chospermum (2) (4)	ve non-motile gamete which are similar is Haplobiontic type Diplontic type eristic feature of					
(1) (2) (3) (4) The (1) (3) The (1) (3)	Similar gametes which are Similar gametes which are One active motile gamete a Dissimilar gametes which a elife cycle exhibited by Batra Diplohaplontic type Diplobiontic type Chantransia stage in the life Batrachospermum Oedogonium	motile non-motile nd one passiver motile chospermum (2) (4) e is a charact (2) (4)	ve non-motile gamete which are similar is Haplobiontic type Diplontic type eristic feature of Sargassum Coleochaete ody of hydra and beneath the scales of					
(1) (2) (3) (4) The (1) (3) The (1) (3)	Similar gametes which are Similar gametes which are One active motile gamete a Dissimilar gametes which a elife cycle exhibited by Batra Diplohaplontic type Diplobiontic type Chantransia stage in the life Batrachospermum Oedogonium	motile non-motile nd one passiver motile chospermum (2) (4) e is a charact (2) (4)	te non-motile gamete which are similar is Haplobiontic type Diplontic type eristic feature of Sargassum Coleochaete					

				2					
				Tilde					
RPM	l		4	Dioecious None of the above					
7.	Nan	nandria of Oedogonium are		170					
	(1)	Monoecious	(2)	Dioecious					
	(3)	Both monoecious and dioecious	(4)	None of the above					
8.	The	reserve food material in Xanthoph	yceae i	s					
	(1)	Lamminarin and Mannitol	(2)	Fucoxanthin					
	(3)	Leucosin	(4)	Floridean Starch					
9.	are			dine, mineral salts, bromine and potash					
	(1)	Diatoms	(2)	Kelps					
	(3)	Blue-green algae	(4)	Red algae					
10.	Aga	r-agar is obtained from							
	(1)	Brown algae	(2)	Blue-green algae					
	(3)	Red algae	(4)	Green algae					
11.	Sexual reproduction takes place by gametangial copulation in								
	(1)	Yeast (2) Lichens	(3)	Rhizopus (4) Penicillium					
12.	A derivative of ergot known by the name lysergic acid, used in human medicine is obtained from								
	(1)	Mucor racemosus	(2)	Aspergillus flavus					
	(3)	Claviceps purpurea	(4)	Penicillium javanicum					
13.	Wh	ich of the following classes of fungi	form c	roziers during sexual reproduction?					
13.	44 11.			3 1					
13.	(1)	Ascomycetes	(2)	Phycomycetes					

				S
				Tide
À. À			5	h infect <i>Berberis</i> leaves are Uredospores Telentospores
14.	In t	he life history of Puccinia, the spor	res whic	h infect <i>Berberis</i> leaves are
	(1)	Basidiospores	(2)	Uredospores
	(3)	Aeciospores	(4)	Telentospores
15.		yeast in which both haploid and	diploid	alternating generations propagate
	(1)	Saccharomyces cerevisiae	(2)	Saccharomyces ludwigii
	(3)	Schizosaccharomyces octosporus	(4)	None of the above
16.	Coll	etotrichum belongs to form order		
	(1)	Melanconiales	(2)	Sphaeropsidales
	(3)	Moniliales	(4)	Mycelia sterilia
17.	Deu	teromycetes fungi produce conidia	in	
	(1)	Sporodochium	(2)	Pycnidium
	(3)	Acervulus	(4)	All the above
18.	Lich	nens are classified on the basis of		
	(1)	Algal Partner	(2)	Fungal Partner
	(3)	Both Algal and Fungal Partner	(4)	External Structure
1 9 .	Whi	ch of the following edible mushroo	ms belor	ngs to Basidiomycota ?
	(1)	Morchella (2) Terfezia		Verpa (4) Pisolithus
20.	Pleu	protus is commonly known as		
	(1)	Button mushroom	(2)	Oyster mushroom
	(3)	Paddy Straw mushroom	(4)	Jelly Fungi

SPACE FOR ROUGH WORK P.T.O.

				2						
				The state of						
RPM		6		Shindent Bound						
21.	Liverworts are usually			173						
	(1) Green and thalloidal	(2)	Colourless and	l thalloidal						
	(3) Red and thalloidal	(4)	Blue and thall	oidal						
22.	Cyanobacteria are found in the thal	lus of								
	(1) Riccia (2) Anthoceros	(3)	Funaria	(4) Pellia						
23.	The teeth of the peristome of Funar	ia are								
	(1) sensitive	(2)	hydroscopic							
	(3) hygroscopic	(4)	sensitive and l	nydrophobic						
24.	Alternation of morphologically different generations is called									
	(1) Homologous	(2)	Heterologous							
	(3) Both of the above	(4)	None of the ab	oove						
25.	Gametophytic generation is dominar	nt in								
	(1) Gymnosperms	(2)	Angiosperms							
	(3) Bryophyta .	(4)	Pteridophytes							
26.	The gametophyte is saprophytic subterranean in									
	(1) Osmunda (2) Psilotum	(3)	Nephrolepis	(4) Rhynia						
27 .	The diameter of megaspore of Isoete	s is								
	(1) 1·0 mm to 1·5 mm	(2)	1.6 mm to 2.0	mm						
	(3) more than 2·0 mm	(4)	upto 0-9 mm							
28.	The name Calamites is due to Sucke	ow who us	ed it for							
	(1) pith cast (2) tree	(3)	sporangium	(4) rhizome						

								S.	
								Student	
Α					7			1	
29.	The	leaf surface o	f Azo	olla is papilla	te to preve	ent		`	
	(1)	rotting			(2)	wetting			
·	(3)	floating			(4)	All of the ab	oove		
30.	The	most importa	nt ge	enera <i>Rhynia</i>	and Horn	eophyton are	from the		
	(1)	Mesozoic in S	Scotl	and	(2)	Paleozoic in	Scotland		
	(3)	Middle Devo	nian	in Scotland	(4)	Upper Siluri	ian in Ger	many	
31.	The	bacteria whic	h d o	not possess	flagellae a	re termed			
	(1)	monotrichous	s		(2)	amphitricho	us		
	(3)	peritrichous			(4)	atrichous			
32.	The bacterial chromosome has a molecular weight of about								
	(1)	0.02×10^9	(2)	0.2×10^9	(3)	2.0×10^9	(4)	20 × 10 ⁹	
33.	Plas	tids are prese	nt is						
	(1)	E. coli	(2)	TMV	(3)	lichens	(4)	bacteriophage	
34.	Con	jugation in E .	coli	was demonst	rated by				
	(1)	Tatum and I	₄eder	berg	(2)	Singh			
	(3)	Pande			(4)	Jain			
35.	The	Irish potato fa	amin	e was caused	by				
	(1)	Alternaria so	lani		(2)	Phytophthore	a infestan	S	
	(3)	(3) Puccinia graminis			(4)	Albugo cand	ida 		
36.	Cory	nebacterium 1	atha	yi causes					
	(1)	yellow slime	disea	ase	(2)	yellowing ro	t		

				Still						
RPM	Marmor virgatum causes (1) streak mosaic (3) foot rot (4) powdery mildew									
37.	Mai	rmor virgatum causes		CHI.						
	(1)	streak mosaic	(2)	soil borne mosaic						
	(3)	foot rot	(4)	powdery mildew						
38.	Roo	t knot disease is caused by								
	(1)	Anguina tritici	(2)	Marmor tritici						
	(3)	Helminthosporium sativum	(4)	Meloidogyne arenaria						
39.	The point at which the inoculum establishes itself inducing infection is called									
	(1)	infection court	(2)	infection area						
	(3)	infection spot	(4)	infection band						
40.	Loose smut of wheat is caused by									
	(1)	Puccinia graminis var. tritici	(2)	Ustilago nuda var. tritici						
	(3)	Puccinia striformis	(4)	Puccinia recondita						
41.	Sequoia sempervirens attain a height upto									
	(1)	less than 100 meters	(2)	100 meters						
	(3)	more than 100 meters	(4)	None of the above						
42.	Sago is obtained from the stem of									
	(1)	Agathis australis	(2)	Dioon edule						
	(3)	Cryptomeria japonica	(4)	Taxodium distichum						
43.	The		duces cor	nes in Inyo National Forest of California						
	(1)	300 years old	(2)	5000 years old						
	(3)	4600 years old	(4)	3000 years old						

							SE
A				9			malaria
14.	Eph	edrine obtained fro	m <i>Ephedra</i> is (effective	in		
	(1)	cold (2)	asthma	(3)	hepatitis	(4)	malaria
15.	The	development of fem	nale gametoph	yte in G_i	netum is		
	(1)	bisporic		(2)	tetrasporic		
	(3)	trisporic		(4)	monosporic		
16.	Tra_{ℓ}	gopogon porrifolius	is known as				
	(1)	vegetable insect	•	(2)	vegetable oyster		
	(3)	vegetable parasite	·	(4)	vegetable fish		
7.	Gyn	obasic style is obse	rved in	•			
	(1)	Malvaceae (2)	Liliaceae	(3)	Lamiaceae	(4)	Poaceae
8.	Ran	unculus aquatilis s	hows				
	(1)	anemophily		(2)	entomophily		
	(3)	heterophily		(4)	homophily		
9.	Wax	utilized for manuf	acturing candl	es, boot	polishes is obtaine	ed fro	m
	(1)	Laportea crenulat	a	(2)	Copernicia cerife	ra	
	(3)	Montia phya		(4)	Boehmeria nivea		
50.	Bise	xual flowers never	ppening but us	ıally ren	naining undergrour	nd an	d closed is calle
	(1)	Homogamy (2)	Allogamy	(3)	Cleistogamy	(4)	Apogamy
51.	Ano	mocytic type of stor	nata are seen	in			
	(1)	Malvaceae		(2)	Papaveraceae		
	(3)	Capparidaceae		(4)	All of them		·

SPACE FOR ROUGH WORK

					•		13	E		
RPM					10			AudentBour.		
52.	The	activity of n	o r mal	cambium is ab	normal i	in /		OI.		
	(1)	Calotropis	(2)	Bignonia	(3)	Strychnos	(4)	Epilobium		
53.	Tra	nsfer of polle	n grai	ns from the an	ther to s	tigma of a differ	rent pla	nt is		
	(1)	Autogamy	(2)	Xenogamy	(3)	Allogamy	(4)	Geitonogamy		
54.	Helo	bial endospe	rm is	restricted to						
	(1)	Dicotyledon	s		(2)	Monocotyledon	s			
	(3)	Pteridophyt	a		(4)	Bryophyta				
i5.	Plants containing poisonous compounds are called									
	(1)	Urioids	(2)	Phytol	(3)	Cyanophoric	(4)	Semantides		
56.	The system which does not throw light on the origin of angiosperms was proposed b									
	(1)	Charles Bes	ssey		(2)	Bentham and Hooker				
	(3)	Engler and	Prant	L	(4)	John Hutchinson				
57.	The lowest chromosome number is shown by									
	(1)	Poa littoros	a		(2)	Allium cepa				
	(3)	Наріораррі	ıs gra	cilis	(4)	Quercus indica				
58.	Gymnosperms are separated and placed rightly before angiosperms by									
* .	(1)	Bentham ar	nd Ho	oker	(2)	Engler and Prantl				
	(3)	Anderson			(4)	Eichler				
5 9 .	The	calcium oxal	ate cr	ystals are seen	in some	members of		-		
	(1)	Solanaceae	(0)	Onagraceae	(3)	Liliaceae		Poaceae		

_ <u>_</u> /		(-)		(0)	p	(1)	prote	
The	ploidy of <i>Tri</i>	ticum (2)	aestivum is	(3)	Tetraploid	(4)	Hexaploid	
(3) 8 domestication centers				(4)	10 domestication	n cente	ers	
(1)	4 domestica	tion c	enters	(2)	6 domestication	center	rs	
Acco	ording to Vav	ilo v , 1	the cultivated	crops orig	inated from			
(3)	Bennettites	<u>.</u>		(4)	Ginkgo			
(1)	Lyginopteris	s		(2)	Cordaites			
Whi	ch of the foll	owing	is a fossil pte	ridosperm	?			
(1)	Crossotheca	(2)	Kaloxylon	(3)	Sphenopteris	(4)	Lagenostoma	
The seed of lyginopteris is called								
(1)	Coal balls	(2)	Amber	(3)	Coprolite	(4)	Nodule	
This is a fossilised faeces or excreta of animals.								
(1)	Fungi	(2)	Algae	(3)	Bryophytes	(4)	Starfishes	
Dia	tomaceous ea	rth is	formed from	the siliceo	us cell walls of			
(1)	Cretaceous	(2)	Permian	(3)	Carboniferous	(4)	Silurian	
Whi	ich period is o	often	referred as Co	al Age?				
(3)	Asclepias			(4)	Amanita			
(1)	Archaefruct	us		(2)	Achyranthus			
The	oldest angio	spern	s are believed	to be			`	
				11				
							Student	

						13	Japan			
RPN	ı			12			CARROL			
68.	Inte	ernational Rice R	esearch Institut	e is locate	ed in		17			
	(1)	Philippines (2) UK		India	(4)	Japan			
69.	The	botanical name	of Ragi (finger r	millet) is			٠			
	(1)	Panicum miliae	eum	(2)	Eleusine coraco	ına				
	(3)	Dolichos lablab			Avena sativa					
70.	Which of the following is not a kind of tea?									
	(1)	Green tea (2	Oolong tea	(3)	Let-pet tea	(4)	Red tea			
7 1.	The yellow coloured dye is obtained from Crocus (Saffron), from its									
	(1)	Leaves		(2)	Bark					
	(3)	Stigma			Young flower b					
72.		ooning is practise								
	(1)	Groundnut plan	nt	(2)	Rubber tree					
	(3)	Sugarcane plan	t	(4)	Pea plant					
7 3.	Which of the following is not an essential oil?									
	(1)	Olive oil	•	(2)	Lemon grass oi	1				
	(3)	Jasmine oil		(4)	Sandalwood oil					
74.	Lloy	od Botanical Gard	len is situated a	ıt						

The dried specimens of plants in the herbaria are poisoned with

75.

SHILDEN BOUNTS! COM

	(1) Potassium cyanide										
	(2) Laurylpentachloride										
	(3) Dichloro Diphenyl Tetraacetic acid										
(4) Bromophenol											
76.	The fluid-mosaic model for cell membrane was given by										
	(1) Singer and Nicolson	(2)	Benda and Ly	on .							
_	(3) Singer and Johnson	(4)	Singer and Da	avson							
77.	Cells placed in a hypotonic solution										
	(1) shrink	(2)	swell								
	(3) remain unaffected	(4)	dissolve								
78.	The diameter of the macrofibrils of the cell wall is upto										
	(1) 4·0 μm (2) 1·0 μm	(3)	0·8 μm	(4)	0·5 μm						
79.	(1) 4·0 μm (2) 1·0 μm The invaginations of plasma membr		<u> </u>		0·5 μm						
79.			<u> </u>	n as	0·5 μm episomes						
	The invaginations of plasma membr	(3)	cteria are know polysomes	n as	<u>·</u>						
	The invaginations of plasma membr	(3)	cteria are know polysomes	n as	<u>·</u>						
79. 	The invaginations of plasma membra (1) ribosomes (2) mesosomes The most widely used fixative in electrons.	(3)	cteria are know polysomes roscopy is	n as	<u>·</u>						
	The invaginations of plasma membra (1) ribosomes (2) mesosomes The most widely used fixative in electric (1) ester	(3) extron mic (2) (4)	polysomes roscopy is ketone ether	n as	<u>·</u>						
80.	The invaginations of plasma membra (1) ribosomes (2) mesosomes The most widely used fixative in electrons (1) ester (3) formaldehyde	(3) extron mic (2) (4)	polysomes roscopy is ketone ether	n as	<u>·</u>						

							25				
RPM	Peroxisomes contain enzyme (1) catalase (2) ligase (3) lactase (4) endonucle										
82.	Peroxisomes contain enzyme										
	(1)	catalase	(2)	ligase	(3)	lactase	(4)	endonuclez			
83.	The	sedimenta	tion coe	fficient of th	e ribosome	with 30S and	i 50S subu	nits is			
	(1)	80S	(2)	70S	(3)	60S	(4)	100S			
84.	The	stalked pa	rticles p	oresent on th	ne inner me	mbrane of mi	tochondria	are known as			
	(1)	subunits o	of Parso	n	(2)	subunits of Fernandez-Moran					
	(3)	subunits o	of Nelso	n 	(4)	subunits of	Johnson	·			
85.	The	\mathbf{F}_1 particle	s or ele	mentary pai	rticles found	I in the mitoc	hondria ai	re			
	(1)	sessile	(2)	liquid	(3)	stellate	(4)	stalked			
86.	. The microtubules of spindle fibres are composed of										
	(1)	chitin	(2)	tubulins	(3)	keratin	(4)	albumin			
87.	Dow	vn syndrom	e is due	e to							
	(1)	monosomy	y – 21		(2)	trisomy – 12	:				
	(3)	trisomy –	21		(4)	monosomy –	12				
88.	Lateral loops are observed in										
	(1)	lampbrus	h chrom	osome	(2)	salivary glai	nd chromo	some			
	(3)	Both (1) a	ınd (2)		(4)	None of the	above				
89.			_	ment occurs		omosome arm	and does	not include the			
	(1)	pericentri	c invers	ion	(2)	paracentric	inversion				
	(3)	acentric in	nversior	1	(4)	helocentric i	nversion				

				1	15			CAR
0.	Cri-	du-chat synd	rome	results from the	deletio	n of the short a	arm of ch	romosome
	(1)	12	(2)	07	(3)	05	(4)	aromosome
1.	Rap	hanobrassica	is a/a	an				
	(1)	aneuploid	(2)	autopolyploid	(3)	monoploid	(4)	allopolypoid
2.	Poly	ploid can be	induc	ed experimentall	y by u	sing		
	(1)	alcohol	(2)	colchicine	(3)	acetone	(4)	ether
3.	The	nucleolus wa	as firs	t described by		·		
	(1)	Fahn	(2)	Fontana	(3)	Frank	(4)	Frazer
4.	In a	nucleosome,	the l	inker histone is				
	(1)	H ₂ A	(2)	Н ₃	(3)	H ₄	(4)	H ₁
5.	The	process of cr	ossinį	g-over in meiosis	starts	during		
	(1)	Leptotene	(2)	Pachytene	(3)	Zygotene	(4)	Diakinesis
6.	Linl	cage in <i>Drosc</i>	phila	melanogaster wa	as first	reported by		
	(1)	Watson	(2)	Morgan	(3)	Muller	(4)	Monod
7.				when the same		romatids of a te	etrad are	involved in the
	(1)	multiple ch	iasma		(2)	reciprocal chia	asma	
	(3)	single chias	ma		(4)	complementar	y chiasn	na
8.	Dipl	oid organism	ıs tha	t have 2 different	t allele	s of a specific g	ene locu	s are said to be
	(1)	homozygous	s (2)	heterozygous	(3)	azygous	(4)	trizygous

99.	In Paramoecium cytoplasmic particles transmitted through the cytoplasm as										
	(1)	Alpha particles	(2)	Kappa particles							
	(3)	Sigma particles	(4)	Beta particles							
100. 101. 102. 103.	Нур	pertrichosis in man is due to		•							
	(1)	recessive X-linked gene	(2)	dominant X-linked gene							
	(3)	Y-linked gene	(4)	somatic gene							
101.	Bar	r bodies are absent in									
	(1)	Klinefelter syndrome	(2)	Normal females							
	(3)	Normal males	(4)	Triple X-female							
102.	A mutation involving a change from a purine-pyrimidine base pair to the other purine-pyrimidine base pair is known as										
	(1)	neutral mutation	(2)	tranversion mutation							
	(3)	nutritional mutation	(4)	transition mutation							
103.	Ker	nel colour in wheat is an example of									
	(1)	quantitative inheritance	(2)	polygenic inheritance							
	(3)	monogenic inheritance	(4)	cytoplasmic inheritance							
104.	Skir	n colour in man is due to									
	(1)	qualitative inheritance	(2)	quantitative inheritance							
	(3)	monogenic inheritance	(4)	cytoplasmic inheritance							

								2
								age
A					17			178
105.					crossed to	•	cessive aa	bb cc and the
					• -	oc, 3 ABc, 71	ABC	
	Hov	v many loci	are lin	ked ?				
	(1)	One loci lii	nked		(2)	Two loci lin	nked	
	(3)	Three loci	linked		(4)	All of them	linked	
106.	In Z	Z-DNA, the r	number	r of base pa	irs, per helio	cal turn are		
	(1)	10.9	(2)	10.1	(3)	21.1	(4)	10.0
107.	The	process of p	rotein	synthesis i	s terminated	by the codo	n	
	(1)	UUG	(2)	UAA	(3)	UUU	(4)	CCU
108.	The	codon AAA	codes	for the ami	no acid	· · · · · · · · · · · · · · · · · · ·		
		Lysine	(2)	Serine	(3)	Valine	(4)	Leucine
09.	The	Operon mod	del for	the regulat	ion of lac ge	nes was proj	posed by	
	(1)	Beadle and	l Tatui	m	(2)	Watson and	d Crick	
	(3)	Jacob and	Monod	l	(4)	Nilsson-Eh	le	
110.	The	genetic code	e is					
	(1)	triplet code	e		(2)	non overlag	pping	
	(3)	universal			(4)	All the abo	ve	·
111.	Ger	mplasm the	ory wh	ich was pu	blished in th	ne book Das	Keimplasm	a was preposed
	by							
	(1)	Stebbins			(2)	August We	ismann	
	(3)	Mullar			(4)	S. Wright		

SPACE FOR ROUGH WORK

					15					
					Taey					
RPM			18		1.3	6				
112.	The	concept of natural selection v	vas explained	18 s explained by Darwin in his masterpiece (2) Philosophie Zoologique						
	(1)	Principles of Geology	(2)	Philosophie	Zoologique	1.				
	(3)	The Origin of Species	(4)	None of the	se					
113.	rRN	A is synthesized by the enzyr	ne							
	(1)	RNA polymerase I	(2)	RNA polyme	erase II					
	(3)	RNA polymerase III	(4)	Both (1) and	l (3)					
114.	The removal of introns from eukaryotic pre-mRNA occurs in the nucleus in comp									
	(1)	spliceosomes	(2)	quantosome	S					
	(3)	dictyosomes	(4)	mesosomes						
115.	The	double-helix model of DNA w	as proposed	by Watson a	nd Crick in					
	(1)	1850 (2) 1950	(3)	1953	(4) 1853					
116.	Which of the following methods of plant breeding is the easiest method of crop improvement?									
	(1)	Hybridization	(2)	Plant Introd	uction					
	(3)	Mass Selection	(4)	Mutation Br	reeding					
117.	Mas	s Selection method of crop im	provement is	s followed in						
	(1)	Cross Pollinated Crops								
	(2)	Self Pollinated Crops								
	(3)	Both Cross and Self Pollinat	ted Crops							
	(4)	Vegetatively Propagated Pla	nts							
SPAC	CE FO	PR ROUGH WORK								

Δ

118. The correct sequence of hybridization technique is

- (1) Emasculation Bagging Crossing Labelling
- (2) Emasculation Crossing Bagging Labelling
- (3) Labelling Bagging Crossing Emasculation
- (4) Crossing Bagging Labelling Emasculation

119. In backcross method, the F₁ is crossed to

(1) Recipient parent

(2) Donor parent

(3) Both the parents

(4) Allowed to self pollinate

120. Which of the following radiations are non-ionising?

- (1) α-rays
- (2) X-rays
- (3) γ-rays
- (4) UV-rays

121. The growth hormone used in Plant Tissue culture is

(1) Auxins

(2) Cytokinins

(3) Giberellins

(4) All the above

122. Somatic embryos are encapsulated in a suitable matrix to produce synthetic seeds

(1) Sodium purpureate

- (2) Sodium alginate
- (3) Sodium hexametaphosphate
- (4) Sodium hydroxide

123. Which of the following is **not** a type of ELISA (Enzyme Linked Immuno-Sorbent Assay)?

(1) DAS - ELISA

(2) DAC - ELISA

(3) PAS - ELISA

(4) PAC – ELISA

SPACE FOR ROUGH WORK

P.T.O.

Student Bounty.com

							24	100				
RPM				2	20			CARR	\e			
124.	The plasmid present in Agrobacterium tumefaciens is (1) Ti plasmid (2) Ai plasmid											
	(1)	Ti plasmi	d		(2)	Ai plasmid			-			
	(3)	Ri plasmi	d		(4)	Gi plasmid						
125.	In t	he Transge	nic Toba	acco plant, the tra	ansfer	of a gene from	n <i>E. coli</i> to	tobacco was	for			
	(1)	Cyclodext	rin gluc	osyltransferase	(2)	Mannitol de	Mannitol dehydrogenase					
	(3)	Acetyl Co	-A redu	ctase	(4)	Nopaline synthatase						
126.	Physical Gene transfer in plants can take place by											
	(1) DNA Mediated Gene Transfer											
	(2)	Agroinfec	tion									
	(3) RNA Mediated Gene Transfer											
	(4) Polymerase Chain Transfer											
127.	Whi	Which of the following is <i>not</i> a molecular marker?										
	(1)	RFLP	(2)	RAPD	(3)	VNTR	(4)	VAPD				
128.	For cloning large DNA sequences, which vector can be employed?											
	(1)	YAC	(2)	PAC	(3)	ZAC	(4)	TAC				
129.	The plasmid prepared by Bolivar and Rodriguez is											
	(1)	pUC	(2)	pBR322	(3)	YRp	(4)	YAC				
130.	Which of the following methods is used to obtain cybrids?											
	(1)	Fusion of the other		protoplasts from	n one j	parent with e	enucleated	protoplast fi	rom			
	(2)	Fusion of nuclei fro		protoplast from o	ne par	ent and proto	plast conta	ining non-via	able			
	(3)	Selective	elimina	tion of one of the	nuclei	from the he	terokaryon					
	(1)	Apy of th	o obovo									

SPACE FOR ROUGH WORK

131. W.S. Gosset designed

- (1) t-test
- (2) Z-test
- (3) χ^2 -test
- (4) F-test

132. When the values of X and Y are inversely proportional to each other, then the coefficient of correlation is

(1) Perfectly +ve

(2) Perfectly -ve

(3) Moderately +ve

(4) Moderately -ve

133. Yate's correction is applied in

(1) Paired t-test

(2) χ^2 -test

(3) Unpaired t-test

(4) Z-test

134. Which of the following shows no correlation?

- (1) The age of husband and wife
- (2) Shoe size and intelligence
- (3) Years of education and income
- (4) Amount of rainfall and yield of crop

135. Regression coefficient of Y for one unit of X can be found out by the formula

(1)
$$b_{xy} = \frac{\Sigma(X - \overline{X})(Y - \overline{Y})}{\Sigma(X - \overline{X})^2}$$

(2)
$$b_{xy} = \frac{\Sigma(X - \overline{X})^2}{\Sigma(X - \overline{X})(Y - \overline{Y})}$$

(3)
$$b_{xy} = \frac{\Sigma(\overline{X} - X)(Y - \overline{Y})}{\Sigma(X - \overline{X})^2}$$

(4)
$$b_{xy} = \frac{\Sigma(X - \overline{X})(\overline{Y} - Y)}{\Sigma(X - \overline{X})^2}$$

				Nitrifying bacteria Nitrogen fixing bacteria
RPM			22	CHE
136.	Nitr	osomonas and Nitrobacter are ter	rmed	CH CH
	(1)	Ammonifying bacteria	(2)	Nitrifying bacteria
	(3)	Denitrifying bacteria	(4),	Nitrogen fixing bacteria
	The	reduction of Nitrogen to Ammon	ia requir	es
	(1)	6 electrons	(2)	2 electrons
	(3)	8 electrons	(4)	one electron
138.	In a	molecule of water the average h	ydrogen -	oxygen interatomic distance is
	(1)	0·965 nm (2) 0·0965 μm	(3)	0·0965 nm (4) 0·0965 pm
139.	RuB	BisCO is conjugated enzyme havir	ng molecu	llar weight of
	(1)	560 kd (2) 126 kd	(3)	255 kd (4) 600 kd
139.	Prin	nary acceptor of CO_2 in C_4 plants	s is	
	(1)	RuDP	(2)	NaOH
	(3)	Phosphophenol pyruvate	(4)	ĄTP
141.	IUC	N is also known as		
	(1)	World Conservation Union	(2)	World Population Union
	(3)	World Wildlife Union	(4)	World Nature Union
142.	Chie	ef plants of Reed swamp stage ar	e	
	(1)	Phragmites and Scirpus	(2)	Salix and Cornus
	(3)	Azolla and Lemna	(4)	Carex and Juncus
		ND DOLLON WORK	<u> </u>	

								S		
								Te	6	
A					23				30	
143.	Suc	cession of n	nicro-or	ganisms th	at occur with	nin micro-er	vironment i	s called		
	(1)	Sedge mea			(2)	Phytoplan				
	(3)	Zooplankt			(4)	Serule		s called		
144.	The	Ganga Act	ion Pla	n was laun	ched in				41	
	(1)	1986	(2)	1968	(3)	1996	(4)	2000		
145.	Chi	pko Movem	ent was	s for						
	(1)	protection	of air		(2)	protection of tiger				
	(3)	protection	of trib	als	(4)	protection	of trees			
146.	The	World Wild	ilife Fu	ınd was lav	ınched in Ind	lia in				
	(1)	1945	(2)	1960	(3)	1969	(4)	1980		
147.	Gen	omic databa	ase con	sists of the	gene sequen	ce regarded	l as			
	(1)	R-DNA se	quence	s	(2)	C-DNA sequences				
	(3)	mutant Di	NA seq	uences	(4)	T-DNA sec	quences			
148.	The	EMBnet w	as esta	blished in t	the year					
	(1)	1998			(3)	1988	(4)	1968		
149.	CDF	D is EMBn								
	(1)	India	(2)	Japan	(3)	Sweden	(4)	China		
150.	Find	l the odd ab	brevia	tion/databa	se out.					
150.	Find (1)	the odd ab	brevia	tion/databa	se out. (2)	GenBank				

सूचना - (पृष्ठ 1 वरुन पुढे....)

- Student Bounty.com प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरत्दीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपस्तिका स्वतः बरोबर **(9)** परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नम्ना प्रश्न

Pick out the	Pick out the correct word to fill in the blank:										
Q. No. 201.	I congratula	te you	your	grand suc	ccess.						
	(1) for	(2) at	(3) on	(4)	about						
	` `		` `	`							

ह्या प्रश्नाचे योग्य उत्तर "(3) on" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव खालीलप्रमाणे प्र.क्र. 201 समोरील उत्तर-क्रमांक "3" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

(2) (1)प्रश्न क्र. 201.

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या प्रविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तृळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK