थानिव्याज्याता , प्राणिशास्त्र चास्त्री परी

2011 Code: ROM

परीक्सा दिः १२/२२/२०१२ प्रश्नपुस्तिका क्रमांक BOOKLET No.

प्रश्नपुरितका

वेळ : $1\frac{1}{2}$ (दीड) तास

चाळणी परीक्षा प्राणीशास्त्र विषयक ज्ञान

Student Bounty.com एकूण प्रश्न : 150

एकुण गुण: 150

सुचना

सदर प्रश्नपुस्तिकेत 150 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकड्न लगेच बदलून घ्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

परीक्षा-क्रमांक शेवटचा अंक केंद्राची संकेताक्षरे

- वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सूचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमृद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास द्मावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मुल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची अचुक उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार भुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर

40 सूचनेविना पर्यवेक्षकांच्या

व्याजनाता , अर्थाणेशास्त्र स्थाक्ती पर्यक्षाता , अर्थाका ROM

Student Bounts, com कच्च्या कामासाठी जागा / SPAGESFORTROOGIFWOME 5 15

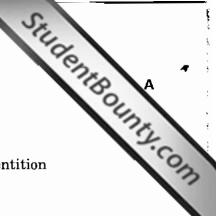
www.StudentBounty.com

Lepisma

(2)

Cockroach

(1)


(3) Butterfly

(4) House-fly

							15	
A					5		de	24.
		what angle is ion?	s the l	oody of gas	tropo ds rota	ted on a ver	rtical axis during comp	180
	(1)	360°	(2)	180°	(3)	90°	(4) 60°	
		ch organ in entry and ex			elong ate d fu	nnel or siph	nons during respiration	for
	(1)	Pulmonary	sacs		(2)	Gills		
	(3)	Trachea			(4)	Nuchal lobe	es	
19.	Whi	ch symmetry	does	the Liver f	luke exhibit	; ?		
	(1)	Bilateral			(2)	Radial		
	(3)	Asymmetry			(4)	None of the	ese	
20.	Whi	ch animal ha	as no	madreporite	e ?			
	(1)	Crinoids			(2)	Holothuroid	ds	
	(3)	Echinoids			(4)	Ophiuroids		
	Whi chor	ch of the	follo	wing char	acteristics	of Balanog	lossus resembles that	of
	(1)	Gill slits an	d thei	r blood sup	ply			
	(2)	Possession	of note	ochord			•	
	(3)	Possession	of dor	sal hollow n	erve cord			
	(4)	All of these						
22.	 Wha	at is meaning	g of th	e term 'Ret	trogressive 1	netamorphos	sis' ?	
	(1)	`			J	than the adu		
	(2)	Larva show	s less	advanced c	haracters th	an the adult	t	
	(3)	Larva does	not sl	ow metamo	orphosis			
	(4)	Larva show						
•		R ROUGH WO						

								S	Ident Bounts.
ROM	1				6				GENT A
23.	Whi	ich of the follow	ving	is true in ca	se of gills	s of	bony fish ?		Boll
	(1)	They do not h	ave	gill rakers	(2)	Th	ney open via	gill slit	75
	(3)	They are filifo	rm		(4)	Th	ney are lamel	liform	
24.		ich of the folling?	llow	ing structure	es of Am	phio	oxus form a	gratin	g to help filter
	(1)	Velar tentacle	s		(2)	Or	ral cirri		
	(3)	Oral palps			(4)	Al	l of these		
25.	Wha	at mode of pare	ental	care is show	vn by Eu	rope	an Midwife	Гoad, А	lytes ?
	(1)	Building nest							
	(2)	Female carryi	ng e	ggs on the ba	ack				
	(3)	Male carrying	egg	s round the b	ack and	thig	hs		•
	(4)	Female carryi	ng e	ggs in brood	pouch				
26.		m the time of t		,	amphibis	ns l	have remain	ed impo	erfectly adapted
	(1)	they cannot be	reat	h out of wate	r for a lo	ng ti	ime		
	(2)	their food sour	rce i	s chiefly four	nd in wat	er	,		
	(3)	they need aqu	atic	habitat to br	reed				
	(4)	All of these							
27.	Neo	tenic forms are	exh	ibited in whi	ich of the	foll	lowing order	of Amp	ohibia ?
	(1)	Anura (2)	Urodela	(3)	Ap	ooda	(4)	All of these
28.	Whi	ich of the follow	ing	early reptile	s are also	o cal	lled 'stem rep	otiles'?	
	(1)	Pleisiosaurs			(2)	Co	otylosaurs		
	(3)	Dinosaurs			(4)	Ich	hthyosaurs		

						Still
A				7		10
29.		ch type of reptil		single ter	mporal fossa th	nat separates post or (4) Parapsid
	(1)	Anapsid (2	2) Diapsid	(3)	Synapsid	(4) Parapsid
0.	Pois	on gland found i	in venomous sn	akes is a ı	modified	
	(1)	sub-lingual gla	nd	(2)	parotid gland	l
	(3)	sub-maxillary g	gland	(4)	mandibular g	gland
31.	The	reduction or con	mplete loss of fli	ight has ta	iken place in f	lightless birds due to
	(1)	absence of pred	lators			
	(2)	it allowed redu	ction in wing si	ize		
	(3)	assumption of l	bulk mass of m	uscles		
	(4)	All of these				
				ne migratii	ng birds is esse	entially due to
32.	The	navigational abi	ility amongst th	ic migration	0	
32.	The (1)	navigational abi		_		
32.	(1)		s and landmark	us		
32.	(1)	following routes	s and landmark	us		
32.	(1) (2)	following routes	s and landmark migrating land	XS.		
	(1) (2) (3) (4)	following routes the altitude of inherited instin	s and landmark migrating land act egularity of mig	ration		
	(1) (2) (3) (4)	following routes the altitude of inherited instin	s and landmark migrating land act egularity of mig	ration	Schizognathu	ıs
32.	(1) (2) (3) (4) Duc	following routes the altitude of inherited instin accuracy and re ks possess	s and landmark migrating land net egularity of migtype of	ration f palate.		
	(1) (2) (3) (4) Duc (1) (3)	following routes the altitude of inherited instin accuracy and re ks possess Dromeognathus	s and landmark migrating land net egularity of mig type of	gration f palate. (2) (4)	Schizognathu	

- **35.** The dental formula $2 \left[i \frac{3}{3} c \frac{1}{1} pm \frac{4}{4} m \frac{3}{3} \right]$ is of
 - (1) Human permanent dentition
- (2) Human milk dentition

(3) Horse dentition

- (4) Cow dentition
- 36. Marsupials are mammals belonging to Infra class
 - (1) Prototheria (2)
 - Metatheria
- (3) Theria
- (4) Eutheria
- 37. Which of the following is not an exclusively ectodermal derivative?
 - (1) Hair
- (2) Nail
- (3) Horn
- (4) Tooth
- 38. Which of the following classes possesses only the right systemic arch?
 - (1) Aves
- (2) Reptilia
- (3) Amphibia
- (4) Mammalia

- 39. Neuromast are the sensory cells present in
 - (1) olfactory organs of fishes
- (2) lateral lines of fishes
- (3) inner ear of vertebrates
- (4) middle ear of vertebrates
- 40. The functional kidney of an adult mammal is developed from
 - (1) pronephros

(2) mesonephros

(3) prenephros

- (4) metanephros
- 41. Body temperature regulating center is situated in
 - (1) Limbic system

(2) Lateral lemniscus

(3) Hypothalamus

(4) Anterior thalamic nucleus

				S.
A			9	nce by excreting Urea
42.	Fresh water	bony fishes maintain wa	ater bala	nce by excreting
	(1) Ammon	nia	(2)	Urea
	(3) Guanin	e	(4)	Waste in the form of Uric acid
43.	Pepsinogen i	s secreted by		
	(1) Chief ce	ells	(2)	Oxyntic cells
	(3) Parieta	l cells	(4)	Goblet cells
44.	Following ar	e the phases of gastric j	uice secr	etion <i>except</i>
	(1) Cephali	ic (2) Gastric	(3)	Oesophageal (4) Intestinal
45.	The aim to	release stepwise energy i	in respira	ation is
	(1) To cons	serve more energy	(2)	To prevent cell damage
	(3) To main	ntain body temperature	(4)	All of these
46.	Following as	-	filtratio	on of substances through glomerular
	(1) Temper	ature	(2)	Molecular weight
	(3) Effective	ve diameter	(4)	Electrical charges
47.	Following ar	e functions of Eosinophi	ls <i>except</i>	
	(1) antibod	y production	(2)	ingestion of foreign proteins
	(3) defence	against parasites	(4)	help in resolution and healing
48.	Following ar	e the refractive media o	f human	
	(1) Cornea		(2)	Retina
	(3) Aqueou	s humor	(4)	Vitreous humor

				_	d four globin
RON	7	·	10		TOETH
49.	One	haemoglobin molecule has			1.05
	(1)	one haem and one globin	(2)	four haem an	d four globin
	(3)	two haem and two globin	(4)	three haem a	nd two globin
50.	Sur	factant present in the alveoli is re	sponsib	le for	
	(1)	collapse of lung	(2)	increasing the	e surface tension
	(3)	reducing the surface tension	(4)	no effect on the	he surface tension
51.	In h	numan ear, impedance matching c	auses		
	(1)	increase in pressure at oval wind	low		
	(2)	decrease in pressure at oval wind	low		
	(3)	increase in frequency at oval win	ıdow		
	(4)	decrease in frequency at oval wir	ndow		
52.	, Foll	owing hormones are secreted by a	interior	pituitary gland	d except
	(1)	ACTH (2) FSH	(3)	Prolactin	(4) ADH
53.	Gro	wth hormone has following effects	except	·	
	(1)	increased rate of protein synthes	is		
	(2)	decreased rate of glucose utilizat	ion		
	(3)	increased rate of glucose absorpt	ion by c	ells	
·	(4)	increased mobilization of fatty ac	ei ds		
54.	Adr	eno Cortico Trophic Hormone stin	nulates	synthesis and	secretion of
	(1)	ADH	(2)	Aldosterone	

	•						1	SE
A					11		Ì	ACTH ACTH
55.	BM	R is controlle	ed by					10
	(1)	ADH	(2)	GH	(3)	Thyroxine	(4)	ACTH -
56.	Dial	betes insipid	us is (caused due to th	e defic			
	(1)	Oxytocin	(2)	Vassopressin	(3)	Insulin	(4)	Glucagon
57.				-		e synapse, it can als is active there		ransmit another
	(1)	Choline	(2)	Acetylcholine	(3)	Cholinesterase	(4)	Acetic acid
8.	Syn	aptic fatigue	is du	e to				
	(1)	release of r	nore a	cetylcholine	(2)	release of more	adrena	aline
	(3)	release of r	nore n	oradrenaline	(4)	exhaustion of ne	urotra	ansmitter
59 .	duri		cy, sec			ry is responsible for		
	(1)	FSH	(2)	LTH	(3)	Prolactin	(4)	ADH
0.	Test	costerone is a	secrete	ed by				
	(1)	Sertoli cells	5		(2)	Leydig cells		
	(3)	Spermatozo	a		(4)	Secondary sperm	natocy	te
61.	Ene	rgy flow in t	the eco	system is				
	(1)	Unidirectio	nal		(2)	Amphidirectiona	1	
	(3)	Multidirect	ional		(4)	None of these		

				SE
RO₩	ı	1.	2	Hydrological None of these
62.	The	nitrogen cycle is of type		
	(1)	Sedentary	(2)	Hydrological
	(3)	Gaseous	(4)	None of these
63.	The	source of phosphorus in the nature	is	
	(1)	Volcanoes	(2)	Sedimentary rocks
	(3)	Both (1) and (2)	(4)	Fresh water
64.	Fixa	ation of nitrogen is carried out by all	l the f	following except
	(1)	Avicennia (2) Rhizobium	(3)	Anabaena (4) Nostoc
		~		
65.		first trophic level in the exchange of		
	(1)	Decomposers	(2)	Consumers
	(3)	Producers	(4)	None of these
66.	Gre	en house effect is		
	(1)	moisture layer in the atmosphere		
	(2)	ozone layer in the atmosphere		
	(3)	infra red waves reach the earth		
	(4)	increase in temperature due to inc	rease	in CO ₂ concentration of atmospher
67 .	The	effects of ozone on human health as	re all	the following except
	(1)	extreme fatigue	(2)	atherosclerosis
	(3)	nose and throat irritation	(4)	pulmonary oedema
68.	The	greatest problem in water conserva	tion is	s to reduce the amount of
	(1)	Ground water	(2)	Precipitation
	(3)	Evaporation	(4)	Run-off water

								18
A					13			ers ladder
69.	The	volant ada	ptation	s of birds are	e all the fo	ollowing exc	ept	
	(1)	stream-lin	ed bod	у	(2)	developme	ent of feath	ers
	(3)	developme	ent of a	ir-sacs	(4)	absence of	f urinary b	ladder —————
70.	The	following a	re the	desert adapt	ations of a	nimals exce	e pt	
	(1)	developme	ent of p	arapodia	(2)	moisture (getting	
	(3)	moisture o	onserv	ation	(4)	self-defen	ce against	scorching sun
71.	The	following a	re the	National Par	ks in Mah	arashtra <i>e:</i>	xcept	
	(1)	Tadoba	(2)	Navegaon	(3)	Gir	(4) Pench
72.		_				ne world's f	inest, light	est, warmest an
	mos	t expensive	wool -	the Shahto	osh?			
	mos (1)	t expensive Cheetah	wool - (2)	— the Shahto Nilgai	osh ? (3)	Chiru	(4) Kashmiri goa
	(1)	_	(2)	Nilgai		Chiru) Kashmiri goa
	(1)	Cheetah	(2)	Nilgai		Chiru 1987	(4	
73.	(1) Proj (1)	Cheetah ect Tiger w	(2) ras star (2)	Nilgai rted in 1975	(3)			
73.	(1) Proj (1)	Cheetah ect Tiger w 1973	(2) ras star (2) is fam	Nilgai rted in 1975 nous for	(3)	1987		
73.	Proj (1) Red	Cheetah ect Tiger w 1973 Data Book	(2) as star (2) is famed plant	Nilgai rted in 1975 nous for	(3)	1987 endangere	(4 ed animals	
73.	(1) Proj (1) Red (1) (3)	Cheetah ect Tiger w 1973 Data Book endangere extinct pla	(2) as star (2) is fam ad plant	Nilgai rted in 1975 hous for	(3) (3) (2) (4)	1987 endangere	ed animals) 1988
73.	(1) Proj (1) Red (1) (3)	Cheetah ect Tiger w 1973 Data Book endangere extinct pla	(2) is famed plantants	Nilgai rted in 1975 hous for ts	(3) (3) (2) (4)	1987 endangere	ed animals ed plants a) 1988 nd animals
73.	(1) Proj (1) Red (1) (3)	Cheetah ect Tiger w 1973 Data Book endangere extinct pla	(2) as star (2) is fam ad plant ants ce of the	Nilgai rted in 1975 hous for ts he warning co	(3) (2) (4)	endangere endangere of one noxic	ed animals ed plants a ous species mimicry) 1988 nd animals
73. 74.	(1) Proj (1) Red (1) (3) The (1) (3)	Cheetah ect Tiger w 1973 Data Book endangere extinct pla resemblanc Batesian r Martesian	(2) as star (2) is famed plant ants ce of the mimicry mimic	Nilgai rted in 1975 hous for ts he warning co	(3) (2) (4) louration (2) (4)	endangere endangere of one noxic Mullerian Auto mim	ed animals ed plants a ous species mimicry) 1988 nd animals
73. 74.	(1) Proj (1) Red (1) (3) The (1) (3)	Cheetah ect Tiger w 1973 Data Book endangere extinct pla resemblanc Batesian r Martesian	(2) as star (2) is fam ad plant ants ce of the mimicry mimic	Nilgai rted in 1975 hous for ts he warning co	(3) (2) (4) louration (2) (4)	endangere endangere of one noxic Mullerian Auto mim	ed animals ed plants a ous species mimicry	nd animals to another is

							Sti	ovoida Vesicles
ROM	l				14		`	Too. A
77.	Whi	ich spaces of	Endo	plasmic Reticulı	ım are	rounded, spheric	al and	ovoid:
	(1)	Cisternae	(2)	Tubules	(3)	Cytomembranes	s (4)	Vesicles
78.	Whi	ich part of th	, ne spe	rmatozoa is der	ived fro	m Golgi body spe	ermatio	d ?
	(1)	Acrosome	(2)	Tail	(3)	Nucleus	(4)	Cytoplasm
79.	On	hydrolysis, w	hat d	o the ribosomes	produc	e ?		
	(1)	Acidic prote	ein an	d DNA	(2)	Protein and DN	Ά	
	(3)	Split protei	n and	rRNA	(4)	Basic protein ar	nd rRN	JA [.]
80.	In v	what do mito	chond	ria help ?				
	(1)	Protein syn	thesis	;	(2)	Development of	myofil	orils
	(3)	Removal of	exhau	isted cells	(4)	Formation of lys	sosome	es and vacuoles
81.		the basis of osis is divide	-	etic activities, in	n how n	nany distinct per	iods tl	ne interphase of
	(1)	5	(2)	4	(3)	3	(4)	2
82.	Whi	ich is the lon	gest p	ohase of meiosis	?			
	(1)	Prophase I	(2)	Prophase II	(3)	Metaphase	(4)	Anaphase
83.	Wha	at is property	y of th	ne band of polyt	ene chr	omosome ?		
	(1)	Temporary	inacti	ve	(2)	Temporary activ	/e	
	(3)	Permanentl	ly inac	ctive	(4)	Permanently ac	tive	
84.	Whi	ich are the b	u il di n	g blocks of DNA	. ?			
	(1)	Nucleosides	3		(2)	Phosphate grou	ps of n	ucleotides
	(3)	Nucleotides	}		(4)	Nitrogen bases	of nucl	eotides

1				15			J.G
5. Wh	at is the otl	her nan	ne of informoso	mes ?			
(1)	mRNA	(2)	rRNA	(3)	tRNA	(4)	DNA Orticular are
6. Wh		nucleot	ide sequence	of mRN	IA which codes	s for a pa	articular am
(1)	Phosphate	group		(2)	Sugar group		
(3)	Code			(4)	Nucleosite		
7. Ho		ogenous	s bases of mRN	IA are p	resent in a code	on of the	modern gen
(1)	3	(2)	4	(3)	1	(4)	2
8. In (1) (2) (3) (4)	For adding	g the dinating the	ifferent cistrons the different cis the different ci new cistrons	trons	tronic mRNA?	<i>(</i>	
9. In	which group	of chro	omosomes the	arms are	e 'V' shaped ?		
(1)	Acrocentri	.c		(2)	Telocentric		
	Metacentr	ic		(4)	Submetacenti	ric 	
(3)							
0. W h	o directs en	-		nscription	n process in w	hich mRN	VA is copied
0. W h	nscribed from	m a DN		nscription	n process in w	hich mRN	JA is copied
0. W h	nscribed from	m a DN	IA strand?	nscription	n process in w	hich mRN	IA is copied
0. Wh tra (1)	nscribed from DNA direct RNA direct	m a DN	IA strand? IA polymerase	nscription	n process in w	hich mRN	JA is copied

91.	The	melting poin	nt of n	nitochondrial	DNA is _		compared to nu
	(1)	higher	(2)	similar		lower	
92.	Whi	ich nitrogeno	us bas				thymine of DNA ?
	(1)	Adenine			(3)		(4) Cytosin
93.	Wha	at type of nuc	clei ar	e present in	RBCs of m	an ?	
	(1)	Mononuclea	ite		(2)	Anucleate	
	(3)	Binucleate			(4)	Multinuclea	ate
94.	Who	o first observe	ed the	Lampbrush	chromoson	nes in amphi	ibian oocyte ?
	(1)	J. Roberts (1892)		(2)	Miller and	Beatty (1969)
_	(3)		•	(1960)		· ·	(1882)
95.	Hov	v many types	of en	zymes are re	quired in r	eplication of	DNA ?
	(1)		(2)	3	(3)		(4) 4
96.			ygous	for tallness i	is selfed, th		ion has both tall and dwar
	(1)	Dominance			(2)	Purity of ga	ametes
	(3)	Independen	t asso		(4)	Incomplete	dominance
	Whe					(YyRr) is sel	If pollinated, the phenotypi
97.	ratio	o in the next	gener	ation would			
97.	ratio	o in the next $12:3$	gener	ation would	(2)	9:7	

						•		SE				
A					17	.*		Student				
98.	The	chromosom	e theo	ry of linkage	is formula	ited by						
	(1)	Morgan an			(2)	Sutton and Bo	overi					
	(3)	Bateson ar			(4)	Mendel and L	amprecl	nt				
99.	The	e important features of multiple alleles are all the following except										
	(1)	always occ	upy th	e same locus								
	(2)	crossing-ov	er occ	urs within the	alleles of	same multiple	allele se	eries				
	(3)	no crossing	g-over	occurs within	the alleles	s of same multi	ple allel	e series				
	(4)	always infl	uence	the same cha	racter							
100.	The	different ki	nds of	`polyploids ar	e the follo	owing except						
	(1)	Autopolypl	oid		(2)	Allopolyploid						
	(3)	Aneupolyp	loid		(4)	Autoallopolypl	loid					
101.	The	point muta	tion m	ay occur due	to							
	(1)	deletion m	utatior	n	(2)	inversion mut	ation					
	(3)	insertion n	nutatio	on	(4)	substitutional	mutatio	on.				
102.	The	webbed nec	k is a	characteristic	e of							
	(1)	XXY	(2)	XYY	(3)	XY	(4)	хо				
103.	Dow	n's syndrom	e is a	typical case	of							
	(1)	Monosomy	(2)	Trisomy	(3)	Nullisomic	(4)	Tetraploid				
104.	The	term Euger	nics wa	as coined by								
	(1)	Francis Ga	lton		(2)	H.J. Muller						
	(3)	Clarence M	[cClun	g	(4)	Edmond Wilso	n					

				13	AudentBO.
RON	1	18			CARBO
105.	A clone of Sheep Dolly was deve	loped by			
	(1) Ian Wilmut	(2)	Robert Brick	K S	Ì
	(3) Ian Koch	(4)	Hales		
106.	Human Genome Project was lau	nched in			
	(1) 1986 (2) 1990	(3)	1996	(4)	1998
1 07.	The technique of DNA fingerprin	iting was pio	neered and pe	erfected by	
	(1) Beadle	(2)	Francois Jac	cob	
	(3) Jacques Monod	(4)	Alec Jeffrey	S	
08.	The basis used for DNA fingerpr	inting needs			
	(1) availability of cloned DNA	(2)	availability	of VNTRs	
	(3) availability of human genor	me (4)	variations in	n the offspr	ings
09.	The transgenic animal has				
	(1) foreign DNA in all its cells	(2)	foreign DNA	A in some o	f the cells
	(3) foreign RNA in all its cells	(4)	Both (2) and	d (3)	
1 10.	(3) foreign RNA in all its cells A direct procedure to copy the ge				
I 10.				called	CPU
	A direct procedure to copy the go	ene sequence	of interest is	called (4)	CPU
ar ida	A direct procedure to copy the go	ene sequence	of interest is	called (4)	CPU Java
111.	A direct procedure to copy the go (1) PCR (2) BCG Which language is most suitable	for the work	of interest is PIR of Bioinform PERL	called (4) atics ? (4)	Java

								SE
A					19			19
113.		of the foll	owing h	elps in identif	ication a	nd interpretation	of pro	etein sequ
	(1)	PCR	(2)	NCBI	(3)	NBRF	(4)	EBI
114.	One	of the foll	owing is	s a protein dat	abase:			
	(1)	Mito		,	(2)	SWISS-PROT		
	(3)	NCBI			(4)	Gene Bank		
115.	Whi	ch chemica	al datab	ase is used to	search s	equences of metal	bolic e	nzymes
	(1)	DDBJ			(2)	PDB		
	(3)	Ligand			(4)	Molecular biolog	у Зу	
116.	Whi	ch of the f	ollowing	monosacchari	des is a	ketose ?	<i></i>	
	(1)	Glucose	(2)	Galactose	(3)	Fructose	(4)	Ribose
117.	Whi	ch polysaco	charide :	is present in t	he bacte	rial cell wall ?		
	(1)	Chitin	(2)	Murein	(3)	Lignin	(4)	Pectin
118.	Whi	ch of the f	ollowing	is an unsatuı	rated free	e fatty acid ?		
	(1)	Oleate	(2)	Palmitate	(3)	Stearate	(4)	Laurate
119.	Cera	amide is th	e precu	rsor of which o	class of l	ipids ?		
	(1)	Sphingom	yelin		(2)	Triglycerides		
	(3)	Waxes			(4)	None of these		
120.	Whi	ch hormon	e does n	ot have chole	sterol as	its precursor ?		
	(1)	Progester	one		(2)	Glucagon		
	(3)	Estrogen			(4)	Mineralocorticoi	d	

						•	1	E.
ROM	l				20			CHILDEN HOULI
121.	Whi	ich of the foll	owing	; is a sulphur	containin	g amino acid	! ?	OUL
	(1)	Methionine	(2)	Valine	(3)	Glycine	(4)	Serine
122.	Hae	emoglobin is a	ı prot	ein that posse	esses	leve	el of struct	ure.
	(1)	primary	(2)	secondary	(3)	tertiary	(4)	quaternary
123.	Fibr	roin protein t	hat m	akes silk has	a structu	re which is		
	(1)	α-helical			(2)	β-pleated sh	ieet	
	(3)	triple helix			(4)	None of the	se	
124.	Con	version of α-l	ketogl	utarate to suc	ccinyl-CoA	is a	re	eaction.
	(1)	oxidation			(2)	oxidative ph	osphoryla	tion
	(3)	oxidative de	carbo	xylation	(4)	dehydrogena	ation	
125.		v many molec			ade for ea	ach reduced	FAD mole	cule that enters
	(1)	Two	(2)	Three	(3)	One	(4)	None of these
126.	Whi	ch vitamin d	eficie	ncy causes per	nicious a	naemia ?		
	(1)	B ₁	(2)	B_2	(3)	B_6	(4)	\mathbf{B}_{12}
127.		r a range of rise of every	0 – 40	O°C, the rate	of an enz	yme controll	ed reaction	n is doubled for
	(1)	5°C	(2)	2°C	(3)	10°C	(4)	1°C
128.	As p	per Michaelis	– Mei	nten equation,	in an enz	zyme catalyze	ed reaction	$K_{m} = [S]$ when
		$V = V_{\text{max}}/2$				$V = 2(V_{max})$		
		$V = 3(V_{max})$				$V = V_{max}$		

				Still
A			21	
129.		ich is the most important c	ontrol elemer	nt/enzyme in the glycolytic pathway Phosphofructokinase
	(1)	Pyruvate kinase	(2)	Phosphofructokinase
_	(3)	Hexokinase	(4)	Glucokinase
130.	То ч	which class does the vaccine	produced aga	inst diphtheria belong ?
	(1)	Killed organisms	(2)	Toxoid
	(3)	Edible vaccine	(4)	Live vaccine
131.	The	HIV virus which causes AII	OS mainly inf	ects cells.
	(1)	T-helper cells	(2)	T-killer cells
	(3)	T-suppressor cells	(4)	All of these
132.		ich type of lymphatic cell is 1	esponsible fo	
132.			responsible for	
132.	Whi	ich type of lymphatic cell is i	-	r production of antibodies ?
·	Whi (1) (3)	ich type of lymphatic cell is i	(2) (4)	r production of antibodies ? Macrophages
·	Whi (1) (3)	ich type of lymphatic cell is i NK cells Memory cells	(2) (4)	r production of antibodies ? Macrophages
·	Whi (1) (3) Mor	ich type of lymphatic cell is n NK cells Memory cells noclonal antibodies are used	(2) (4)	r production of antibodies ? Macrophages Plasma cells
133.	Whi (1) (3) Mor (1) (3)	ich type of lymphatic cell is now NK cells Memory cells noclonal antibodies are used pregnancy testing immunesuppressors	(2) (4) in (2) (4)	r production of antibodies ? Macrophages Plasma cells treating diseases
133.	Whi (1) (3) Mor (1) (3)	ich type of lymphatic cell is now NK cells Memory cells noclonal antibodies are used pregnancy testing immunesuppressors	(2) (4) in (2) (4)	r production of antibodies? Macrophages Plasma cells treating diseases All of these
133.	Whi (1) (3) Mor (1) (3) Whi	NK cells Memory cells noclonal antibodies are used pregnancy testing immunesuppressors ich of the following enzymes	(2) (4) in (2) (4) synthesizes I	r production of antibodies ? Macrophages Plasma cells treating diseases All of these Ouplex DNA from RNA template ?
133.	Whi (1) (3) Mor (1) (3) Whi (1) (3)	NK cells Memory cells noclonal antibodies are used pregnancy testing immunesuppressors ich of the following enzymes DNA polymerase	(2) (4) in (2) (4) synthesizes I (2) (4)	r production of antibodies? Macrophages Plasma cells treating diseases All of these Ouplex DNA from RNA template? Reverse transcriptase RNA transcriptase

				SE
ROM	I		22	Ascaris
136.	Whi	ch animal has non-flagellated s	perm ?	OHA
	(1)	Sea urchins	(2)	Ascaris
	(3)	Echidna	(4)	Frog
137.	How	many phases are involved in o	ogenesis	?
	(1)	2 (2) 3	(3)	4 (4) 5
138.		at do you call the jelly layer of ere?	eggs of ar	nphibian which help in protection and
	(1)	Primary egg membrane	(2)	Secondary egg membrane
	(3)	Tertiary egg membrane	(4)	Vitelline membrane
139.		at is involved in the removal of making it capable of fertilizing		of inhibiting material from the sperm
	(1)	Chemotaxis	(2)	Cortical reaction
	(3)	Amphioxus	(4)	Capacitation
140.		ch material of the acrosome hel	lps the sp	erm to dissolve the matrix of cumulus
	(1)	Hyaluronidase	(2)	Fertilizin
	(3)	Jelly	(4)	Lysosome
141.		at do you call it if there is a pout the participation of male ga		of an embryo from a female gamete
	(1)	Parthenogenesis	(2)	Sexual reproduction
	(3)	Asexual reproduction	(4)	Syngamy
142.	The	development of which animal s	hows inde	terminate cleavage ?
	(1)	Nematodes	(2)	Echinoderms
	(3)	Annelids	(4)	Molluscs

A 23 143. What do you call it if during gastrulation, the blastomere separates or splits off fa a pre-existing layer or mass to become the hypoblast? (1) Infilteration (2) Invagination (3) Involution (4) Delamination. 144. Which fetal membrane acts as a reservoir of embryonic excretory waste such as acid? (1) Amnion (2) Chorion (3) Allantois (4) Yolk sac. 145. In which placenta the chorionic villi remains scattered all over the surface of chorion? (1) Diffused (2) Cotyledonary (3) Zonary (4) Discordal. 146. In which contraceptive method, the vas deferens on each side is cut and tied in the contraceptive method, the vas deferens on each side is cut and tied in the contraceptive method.									
144. Which fetal membrane acts as a reservoir of embryonic excretory waste such as acid? (1) Amnion (2) Chorion (3) Allantois (4) Yolk sac 145. In which placenta the chorionic villi remains scattered all over the surface of chorion? (1) Diffused (2) Cotyledonary (3) Zonary (4) Discordal 146. In which contraceptive method, the vas deferens on each side is cut and tied is									
144. Which fetal membrane acts as a reservoir of embryonic excretory waste such as acid? (1) Amnion (2) Chorion (3) Allantois (4) Yolk sac 145. In which placenta the chorionic villi remains scattered all over the surface of chorion? (1) Diffused (2) Cotyledonary (3) Zonary (4) Discordal 146. In which contraceptive method, the vas deferens on each side is cut and tied is									
144. Which fetal membrane acts as a reservoir of embryonic excretory waste such as acid? (1) Amnion (2) Chorion (3) Allantois (4) Yolk sac 145. In which placenta the chorionic villi remains scattered all over the surface of chorion? (1) Diffused (2) Cotyledonary (3) Zonary (4) Discordal 146. In which contraceptive method, the vas deferens on each side is cut and tied is									
145. In which placenta the chorionic villi remains scattered all over the surface of chorion? (1) Diffused (2) Cotyledonary (3) Zonary (4) Discordal 146. In which contraceptive method, the vas deferens on each side is cut and tied is									
chorion? (1) Diffused (2) Cotyledonary (3) Zonary (4) Discordal 146. In which contraceptive method, the vas deferens on each side is cut and tied is									
146. In which contraceptive method, the vas deferens on each side is cut and tied i									
major surgical operation ?									
(1) Tubectomy (2) Vaginal douche									
(3) Spermaticidal jellies (4) Vasectomy									
147. Name the giant fresh water prawn.									
(1) Macrobrachium rosenbergii (2) Penaeus indicus									
(3) Parapenaeopsis sculptilis (4) Metapenaeus monoceros									
148. Which is the proper place for rearing silkworms?									
(1) Machana (2) Dalas (3) Baskets (4) Rearing tra									
Which component does the pearl contain abundantly?									
(1) Water (2) Organic matter									
(3) Calcium carbonate (4) Residue									
150. Name the most popular American class of hen.									
(1) Plymouth Rock (2) Langshan									
(3) Cornish (4) White Leghorn									

सूचना - (पृष्ठ 1 वरुन पुढे....)

- Student Bounty.com प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरि उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपस्तिका स्वतः बरोबर (9)परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

1	ICK	out	uie	COLLECT	word	w	TIII	III	ше	DIAILE	•

Q. No. 201. I congratulate you _ _____ your grand success.

(1) for (2) at (3) on (4) about

ह्या प्रश्नाचे योग्य उत्तर "(3) on" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव खालीलप्रमाणे प्र.क्र. 201 समोरील उत्तर-क्रमांक "3" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्रश्न क्र. 201. (1) (2)

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या प्रविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK