Question	Working	Answer	Mark	Notes
1 (i) (ii) (iii)		09 05 7 10	3	B1 cao B1 cao B1 cao
*2	$80 \times 2.5 = 200$ not enough flour $60 \times 2.5 = 150$ almonds ok $90 \times 2.5 = 225$ sugar ok $60 \times 2.5 = 150$ butter ok $4 \times 2.5 = 10$ not enough pears	More flour and pears needed	4	M1 for use of 2.5 oe A2 for answers of 200,150, 225, 150, 10 (A1 for any one answer) C1 ft for identifying the need for more flour and pears backed up from their results.
3(a)		0 9 1 1 6 8 8 2 2 2 2 2 4 5 6 3 0 0 2	3	B2 for a fully correct diagram (B1 for ordered or unordered leaves, with just one error or omission)
3(b)	(Sum of all times) ÷ 15 327 ÷ 15	Key: 3 2 = 32 21.8	2	B1 for a correct key M1 for summing all times and dividing by 15 A1 cao
4(a)		Triangle with vertices (2,-2), (3,-2), (2,-4)	2	B2 for correct triangle (B1 for a reflection in $y = k$, $k \neq 0$ or for a reflection in the y-axis)
4(b)		Enlargement, scale factor 3, centre (5, 5)	3	B1 for Enlargement B1 for scale factor = 3 B1 for centre = (5, 5)

Question	Working	Answer	Mark	Notes
5	$14059 - 12967 = 1092$ $1092 \times 0.44 = 480.48$	40.04	5	M1 for 14059 – 12967 M1 for '1092' × 0.44 oe
	480.48 ÷ 12			M1 for '480.48' ÷ 12
				M1 for correct conversion to pounds A1 cao
				A1 cao
6	$\frac{1}{2} \times 5 \times 12 + 9 \times 8$	102	4	M1 for splitting into sensible shapes; triangles,
				rectangles or trapezia
				M1 for a correct method to find one of the composite
				shapes
				A2 cao
				(A1 for one correct area)
7	24000 ÷ 1.45 = £16551.72	20 942.07	3	M1 for 24000 ÷ 1.45
	+ £900 = £17451.72 = total costs			M1 for ('£16551.72'+ £900) ×1.20
	£17451.72 \times 1.20			A1 cao
8	1 - 0.995 = 0.005	50	3	M1 for 1 – 0.995 (or 0.005 seen)
	$0.005 \times 10\ 000$			M1 for '0.005' × 10 000
				A1 cao
9(a)		m^6	1	B1 cao
9(b)		y^2	1	B1 cao
		2 10		
9(c)		$8x^2 - 10xy$	1	B1 cao
10	$\frac{1}{2} \times 3 \times 4 \times 7$	42 cm ³	3	M1 for $\frac{1}{2} \times 3 \times 4 \times 7$
				A1 for 42
				B1 ft for cm ³

Question	Working	Answer	Mark	Notes
11(a)	3x + 6 = 4	-2/3	2	M1 for $3x + 6 = 4$
	3x = -2			A1 for -2/3 oe
11(b)	3x/2 = 12	8	3	M1 for $3x/2 = 12$ or $3x - 10 = 14$
	3x = 24			M1 for $3x = 24$
				A1 cao
12(a)		Biased	1	B1 for "Biased towards a particular age range"
12(4)		Biasea	1	Brior Blasea to wards a particular age range
12(b)		Select a random sample from all people in the school	1	B1 for "sample from all people in the school"
13(a)		79	1	B1 cao
13(b)		7n-5	2	B2 for $7n-5$ oe
		,,,,	_	(B1 for $7n \pm k$, where k is an integer $\neq \pm 5$)
14	$(8.9 \times 10^3 - 8.8 \times 10^3) \times 2.5$	2.5×10^{2}	3	M1 for $8.9 \times 10^3 - 8.8 \times 10^3$
				M1 for ' $(8.9 \times 10^3 - 8.8 \times 10^3)$ ' × 2.5
				A1 cao
15		Correct locus	2	B2 for correct locus
				(B1 for omission of rounded locus at corners or for a
				'correct' locus at any consistent distance from the
				edges.
16	5y = 3y + 52	26	3	M1 for $5y = 3y + 52$ oe
	2y = 52			M1 for $2y = 52$
				A1 cao

Question	Working	Answer	Mark	Notes
17	$242 \times 0.88 = 275$ $275 - 242$	33	3	M2 for 242 × 0.88 = 275 (M1 for 100 – 12 or 88 or 0.88 seen) A1 cao
18(a)(i) (ii)		66 11 – 12	3	B1 for 66 – 67 M1 for lines drawn from cf = 12.5 and 37.5 (oe) A1 for answer in range 11 to 12
18(b)		50	1	B1 cao
18(c)		Correct box plot	3	M1 for box drawn between 'quartiles' A1 for 'median' drawn inside the box A1 for points at 50 and 90 joining the box with straight lines
19	(x+5)(x-3)	x = -5, x = 3	3	M1 for $(x \pm 5)(x \pm 3)$ A1 for $x = -5$ A1 for $x = 3$
20(i)		y = 0.5x + 10	5	M1 for grad = $(60 - 10)/100$ oe or for $(y =) 0.5x + c$ M1 for $(y =) mx + 10$
*(ii)		0.5 = 50p charge per minute $10 = £10$ standing charge		A1 for $y = 0.5x + 10$ oe C1 for $0.5 = 50$ p charge per minute, oe C1 for $10 = £10$ standing charge
21		(1, 1), (1, 0), (1, -1), (0, 0), (0, -1), (-1, -1)	3	B3 for all 6 points + no extra points (B2 for 3/4 out of no more than 6 points) (B1 for any one point out of no more than 6)

Question	Working	Answer	Mark	Notes					
22(a)		160, 60, 40, 100, 120	2	B1 for 60 B1 for 40					
22(b)		Block 2.5 squares high Block 1 square high	2	B1 for block 2.5 squares high B1 for block 1 square high					
23	$8.45 \div 4.85 = 1.742$	1.74	4	B1 for either 8.55 or 8.45 B1 for either 4.75 or 4.85 M1 for 8.45 ÷ 4.85 A1 for 1.74 or better					
24	$AB = 5/\tan 60 = 2.887$ $PC = 5/\tan 20 = 13.737$ $Area ADP = 0.5 \times 2.887 \times 5 = 7.2175$ $Area ABCD = 0.5 \times (2.887 + 2.887 + 13.737) \times 5 = 48.7775$ $7.2175/48.7775 \times 100$	14.8	5	M1 for either $AB = 5/\tan 60$ oe or $PC = 5/\tan 20$ M1 for Area $ADP = 0.5 \times 2.887 \times 5$ M1 for Area $ABCD = 0.5 \times (2.887 + 2.887 + 13.737) \times 5$ M1 for '7.2175'/'48.7775' × 100 A1 for 14.8 or better					
25(i) (ii) (iii) (iv)		(5, -4) (2, -9) (-2, -4) (2, -4)	4	B1 cao B1 cao B1 cao B1 cao					
26	$12 \div 10 = 1.2$ m per edge Area of squares = $1.2^2 \times 4 = 5.76$ Area of triangles = $0.5 \times 1.2^2 \times 1.2$	10.7	6	B1 for $12 \div 10 = 1.2$ m per edge M1 for $1.2^2 \times 4$ M1 for $0.5 \times 1.2^2 \times \sin 60$ M1 for $5.76 + 0.5 \times 1.2^2 \times \sin 60 \times 8$ A2 for 10.7 or better (A1 for area of a triangle = 0.624 or better)					

GCSE MATHEMATICS 1MA0 LINEAR PRACTICE PAPERS SET A HIGHER TIER 4H

Quest.	Topic/name	AO1	AO2	AO3	Total		FE	Nu	ManAl	NonManAl	G	S	Total	Low	Mid.	High	Total
1	Travel	3			3					3			3	3			3
2	Recipe			4	4		4	4					4	4			4
3	Stem & Leaf	5			5							5	5	5			5
4	Rot/Enlarge	5			5						5		5	5			5
5	Gas bill		3	2	5		5	5					5	5			5
6	Area		4		4						4		4	4			4
7	Car Sales		3		3		3	3					3	3			3
8	Machine comp			3	3		3					3	3	3			3
9	Indices	3			3				3				3	3			3
10	Volume	3			3						3		3	3			3
11	Equations	5			5				5				5	5			5
12	LH/Rhand		2		2							2	2	2			2
13	Sequence	3			3				3				3	3			3
14	Metal blocks		3		3			3					3		3		3
15	Loci	2			2		2				2		2	2			2
16	Angles in Tri		3		3				2		1		3		3		3
17	DVD		3		3		3	3					3		3		3
18	Cum Freq	7			7							7	7		7		7
19	Quadratic	3			3				3				3		3		3
20	TV Repairs		5		5		5			5			5		5		5
21	Inequalities	3			3					3			3		3		3
22	Histogram	4			4							4	4			4	4
23	Photograph			4	4			4					4			4	4
24	trapezium		3	2	5						5		5			5	5
25	Transform	4			4					4			4			4	4
26	Window		3	3	6						6		6			6	6
	Totals	50	32	18	100	0	25	22	16	15	26	21	100	50	27	23	100
	Percentage	50.0	32.0	18.0	100.0		25.0		AI:	31				50.0	27.0	23.0	
	Foundation % target:	40-50	30-40	15-25			30-40						Target %:	50	25	25	
	Higher % target:	40-50	30-40	15-25			20-30										