Mathematics A

Paper 1 (Non-Calculator)

Practice Papers Set D

Higher Tier - A*

Paper Reference

1380 / 2381

Time: 1 hour 45 minutes

You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser. Tracing paper may be used.

Total Marks

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name,
- centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- · Calculators must not be used.

Information

- The total mark for this paper is 100
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed.

Advice

- Read each question carefully before you start to answer it.
- · Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

GCSE Mathematics (Linear) 1MA0

Formulae: Higher Tier

You must not write on this formulae page. Anything you write on this formulae page will gain NO credit.

Volume of prism = area of cross section \times length

Area of trapezium = $\frac{1}{2}(a+b)h$

Volume of sphere $\frac{4}{3}\pi r^3$ Surface area of sphere = $4\pi r^2$ Volume of cone $\frac{1}{3}\pi r^2 h$ Curved surface area of cone = $\pi r l$

In any triangle ABC

The Quadratic Equation The solutions of ax2+bx+c=0where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Sine Rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Cosine Rule $a^2 = b^2 + c^2 - 2bc \cos A$

Area of triangle = $\frac{1}{2}ab \sin C$

Answer ALL THIRTY TWO questions.

Write your answers in the spaces provided.

You must write down all stages in your working.

You must NOT use a calculator.

1. The histogram gives information about the heights of 540 Christmas trees.

Work out an estimate for the number of Christmas trees with a height greater than 3 metres.

•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
	(Tota	al 3 n	arks

2. P is inversely proportional to V.

When
$$V = 8$$
, $P = 5$

Calculate the value of P when V = 2

•••••	• • • • • • •	• • • • • • • • •	• • • • • • •	• • • • • • •

(Total 1 mark)

3. Expand and simplify $(2 + \sqrt{2})(3 + \sqrt{8})$

Give your answer in the form $a + b\sqrt{2}$, where a and b are integers.

.....

(Total 4 marks)

4. Solve the equation $\frac{x}{2} - \frac{2}{x+1} = 1$

.....

(Total 4 marks)

Diagram NOT accurately drawn

ABC is a right-angled triangle. All the measurements are in centimetres.

$$AB = x$$
 $BC = (x - x)$

$$BC = (x+2)$$

$$AC = (x+4)$$

Show that $x^2 - 4x - 12 = 0$

(Total 3 marks)

6. Find the value of $\left(\frac{27}{8}\right)^{-\frac{2}{3}}$

.....

(Total 2 marks)

Make k the subject of the formula 7.

(Total 4 marks)

Change 125 cm³ into mm³. 8.

(Total 2 marks)

There are 6 black and 4 white counters in box A. There are 7 black and 3 white counters in box B.
Jan takes at random a counter from box A and puts it in box B. She then takes at random a counter from box B and puts it in box A.
Find the probability that after Jan has put the counter from box B into box A there will still be 6 black counters and 4 white counters in box A.
(Total 4 mayles)
(Total 4 marks)

Jan has two boxes.

Diagram NOT accurately drawn

F, G and H are 3 points.

FH = FG.

H is due East of F.

The bearing of G from F is 140° .

Work out the bearing of G from H.

$$065^{\circ}$$
 230° 205° 140° 155° **A B C D E**

(Total 1 mark)

11.
$$(3x+2)^2 - (3x+2)(x-3) =$$

$$(3x+2)(2x+5)$$
 $6x^2+13x-2$ $6x^2+13x+10$ $10x-2$ $(3x+2)(2x-1)$
A B C D E

(Total 1 mark)

Diagram NOT accurately drawn

OAB is a triangle.

$$OA = \mathbf{a}, OB = \mathbf{b}$$

P is the point on AB so that AP : PB = 2 : 1

Find the vector *OP* in terms of **a** and **b**. Give your answer in its simplest form.

OP =			
$\cup I$ —	 	 	

(Total 3 marks)

P, Q and T are points on the circumference of a circle, centre O. The line ATB is the tangent at T to the circle.

$$PQ = TQ$$
.
Angle $ATP = 58^{\circ}$.

Calculate the size of angle *OTQ*. Give a reason for each stage in your working.

(Total 5 marks

In the diagram,

ABC is a triangle, angle $ACB = 90^{\circ}$, P lies on the line AB, CP is perpendicular to AB.

Prove that the angles of triangle APC are the same as the angles of triangle CPB.

(Total 3 marks)

15.	Callum says	
	"4 m ² is equivalent to 400 cm ² ."	
	Is Callum correct?	
	Give reasons for your answer.	
		(Total 2 marks)

Diagram NOT accurately drawn

The diagram shows a circle, centre O. A and B are points on the circle. OA = OB = 6 cm.

The value of $\sin 30^{\circ} = \frac{1}{2}$

Work out the area of the shaded segment. Give your answer in terms of π .

\dots cm ²
(Total 4 marks)

Diagram NOT accurately drawn

ABC is an equilateral triangle.

D lies on BC.

AD is perpendicular to BC.

(a) Prove that triangle *ADC* is congruent to triangle *ADB*.

(3)

(b) Hence, prove that $BD = \frac{1}{2}AB$.

(2)

(Total 5 marks)

Diagram NOT accurately drawn

OPT is a triangle.M is the midpoint of OP.

$$\overrightarrow{OT} = \mathbf{a}$$

$$\overrightarrow{TP} = \mathbf{b}$$

Express \overrightarrow{TM} in terms of **a** and **b**. Give your answer in its simplest form.

\longrightarrow									
TM	=	 	••	 	 	 •			

(Total 2 marks)

19. Factorise completely $4x^2 - 100y^2$

$$(2x + 10y)(2x - 10y)$$

$$2(x+5y)(x-5y)$$

$$4(x+5y)(x-5y)$$

 \mathbf{A}

В

 \mathbf{C}

$$(2x - 10y)(2x - 10y)$$

$$4(x-5y)(x-5y)$$

D

 \mathbf{E}

(Total 1 mark)

20. Solve

$$2x^2 - 9x + 4 = (2x - 1)^2$$

.....

(Total 4 marks)

21. Prove, using algebra, that the sum of two consecutive whole numbers is always an odd number.

(Total 3 marks)

22. Given that $\frac{8-\sqrt{18}}{\sqrt{2}} = a+b\sqrt{2}$, where a and b are integers,

find the value of a and the value of b.

(Total 3 marks)

The diagram shows a solid cone and a solid hemisphere.

The cone has a base of radius x cm and a height of h cm.

The hemisphere has a base of radius x cm.

The surface area of the cone is equal to the surface area of the hemisphere.

Find an expression for h in terms of x.

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
						((]	ľ	•	0)	t	ε	ì]	l		4	ļ		Ì	1	1	l	E	ı	1	ľ	l	ζ		S))

24. Mark says

'8 cm ³ multiplied by 100 equals 8 m ³ '.	
Is Mark right? Give reasons for your answer.	
	•••••
	•••••
	Fotal 2 marks)

25. Construct the graph of $x^2 + y^2 = 9$

(Total 2 marks)

Diagram NOT accurately drawn

ABCDEF is a regular hexagon, with centre O.

$$\overrightarrow{OA} = \mathbf{a}$$
, $\overrightarrow{OB} = \mathbf{b}$.

The line AB is extended to the point K so that AB : BK = 1 : 2

Write the vector \overrightarrow{CK} in terms of **a** and **b**. Give your answer in its simplest form.

(Total 3 marks)

OAB is a triangle.

$$\overrightarrow{OA} = 2\mathbf{a}$$

$$\overrightarrow{OB} = 3\mathbf{b}$$

P is the point on AB such that AP : PB = 2 : 3

Show that \overrightarrow{OP} is parallel to the vector $\mathbf{a} + \mathbf{b}$.

(Total 3 marks)

28. Rearrange $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$

to make u the subject of the formula.

Give your answer in its simplest form.

.....

(Total 2 marks)

29. The diagram shows the graph of $y = x^2 - 5x - 3$

(a) Use the graph to find estimates for the solutions of

(i)
$$x^2 - 5x - 3 = 0$$

.....

(ii)
$$x^2 - 5x - 3 = 6$$

(3)

(b) Use the graph to find estimates for the solutions of the simultaneous equations

$$y = x^2 - 5x - 3$$

$$y = x - 4$$

(3)

(Total 6 marks)

Diagram NOT accurately drawn

The diagram shows a right-angled triangle.

The length of the base of the triangle is $2\sqrt{3}$ cm.

The length of the hypotenuse of the triangle is 6 cm.

The area of the triangle is $A ext{ cm}^2$.

Show that $A = k \sqrt{2}$ giving the value of k.

(Total 5 marks)

31. Here are two right-angled triangles. All the measurements are in centimetres.

(a) Show that 2a + 2b + 1 = 2c

(3)

a, b and c cannot all be integers.

(b) Explain why.

(1)

(Total 4 marks)

32. Here is a shape *ABCDE*.

Diagram NOT accurately drawn

AB, BC and CD are three sides of a square.

BC = x cm.

AED is a semicircle with diameter AD.

The perimeter, P cm, of the shape ABCDE is given by the formula

$$P = 3x + \frac{\pi x}{2}$$

(a) Rearrange this formula to make *x* the subject.

.....(2)

(b)	Find the exact value of k . Give your answer in its simplest form.
	(3)
	(Total 5 marks)

The area, $A ext{ cm}^2$, of this shape is given by $A = kx^2$ where k is a constant.

TOTAL FOR PAPER IS 100 MARKS

BLANK PAGE

New Question	Question	Paper	Skill tested	Mean score	Maximum score	Mean Percent
1	Q06	1203 6B	Use histograms to complete a frequency table	0.45	3	15
2	Q26b	1011 1H	Solve problems using inverse proportion	0.14	1	14
3	Q22	1203 1H	Use surds in calculations	0.56	4	14
4	Q18	1106 13H	Solve fractional equations	0.56	4	14
5	Q25a	1006 1H	Derive an equation from diagrams	0.39	3	13
6	Q16iii	1006 13H	Work out and simplify expressions with negative and fractional indices	0.24	2	12
7	Q15	1106 13H	Change the subject of the formula	0.49	4	12
8	Q09b	0911 1H	Convert between units of volume	0.24	2	12
9	Q22b	1111 3H	Use tree diagrams to find probability when two or more outcomes can happen	0.46	4	12
10	Q14	1111 8H	Calculate a bearing	0.12	1	12
11	Q24	1203 8H	Expand and simplify (px + a)(qx + b)	0.12	1	12
12	Q22b	0911 3H	Use vectors to solve geometric configurations	0.32	3	11
13	Q18	1006 13H	Solve geometric configurations using circle theorems of chord and tangents	0.55	5	11
14	Q17	1106 1H	Prove that two triangles are similar triangles	0.32	3	11
15	Q07	1106 13H	Convert between metric units	0.21	2	11
16	Q13	1111 13H	Find the area of a segment	0.42	4	11
17a	Q24a	0906 3H	Find the conditions in order to prove that two triangles are congruent	0.29	3	10
17b	Q24b	0906 3H	Find the conditions in order to prove that two triangles are congruent	0.24	2	12
18	Q27b	1011 1H	Use vectors to solve geometric configurations	0.20	2	10
19	Q20	1106 8H	Factorise using the difference of two squares	0.10	1	10
20	Q20b	1111 3H	Solve problems using quadratic equations	0.39	4	10
21	Q25	0911 1H	Use algebra to perform proofs	0.28	3	9
22	Q22b	1106 1H	Use surds in calculations	0.27	3	9
23	Q25	1106 1H	Find the volume and surface area of a variety of complex shapes	0.35	4	9
24	Q06	1203 13H	Convert between metric units	0.17	2	9
25	Q28a	1011 1H	Solve the equation of a circle with a straight line graphically	0.16	2	8
26	Q23b	1203 1H	Use vectors to solve geometric configurations	0.25	3	8
27	Q26b	1106 1H	Use vectors to solve geometric configurations	0.21	3	7
28	Q25b	0906 3H	Change the subject of the formula	0.12	2	6
29ai	Q14ai	1111 3H	Solve quadratic equations graphically	0.11	1	11
29aii	Q14aii	1111 3H	Solve quadratic equations graphically	0.27	2	14
29b	Q14b	1111 3H	Solve simultaneous linear and quadratic equations graphically	0.19	3	6
30	Q21	1111 3H	Use surds in calculations	0.28	5	6
31a	Q24b	1203 1H	Use Pythagoras' theorem in unstructured situations	0.16	3	5
31b	Q24c	1203 1H	Use Pythagoras' theorem in unstructured situations	0.01	1	1
32a	Q16a	1203 111 1203 13H	Change the subject of the formula	0.11	2	6
32b	Q16b	1203 13H	Find the area and perimeter of compound shapes	0.02	3	1
J25	3,100	.200 1011	TOTAL	9.77	100	