2009 KCSE CHEMISTRY PAPER 2 MARKING SCHEME

1. (a) (i)
$$MnO_{2(g)} + 4HCl_{(aq)} \rightarrow MnCl_{2(g)} + Cl_{2(g)} + 2H_2O_{(i)}$$

(1 mark

(1 mark)

Passing it through a U-tube containing anhydrous Calcium Chloride (CaCl)
- Passing Chlorine gas through concentrated Sulphuric acid in a flask

(2 marks)

(1 mark)

(ii)
$$2Al_{(s)} + 3Cl_{2(g)} \rightarrow 2AlCl_{3(g)}$$

(1 mark)

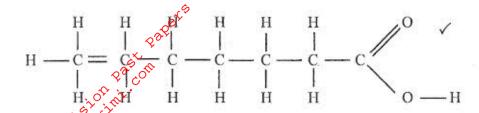
(iii) Moles of Al metal used =
$$\frac{0.84}{27}$$
 \checkmark = 0.0311

(3 marks

Moles of Cl_2 gas = 0.0311 $\times \frac{3}{2}$ = 0.047

Vol. of Cl₂ gas = $0.047 \times 24 \checkmark \frac{1}{2}$ = $1.12 \text{dm}^3 \checkmark \frac{1}{2}$ (Answer to 3 decimal places)

(iv) - Prevent moisture or water from entering the apparatus /absorbing


- React with excess chlorine /prevent environmental pollution ✓

Prevent hydrolysis of Aluminium Chloride (any 2 correct)

(2 marks)

2. (a) (i) 2-methylbut -2-ene;

(2 marks)

- CH, CH, CH, CH, CH, CH, CH, CO—H
 - (b) Determine the boiling points /temperature of the two alkanols. Hexanol has a higher boiling point /temperature
 - Add equal amounts of water to each portion of alkanol and shake. For hexanol two
 layers of liquids are formed where for methanol a homogeneous solution or mixture is
 formed
 - Determine the density of the two alkanols. Hexanol is denser than methanol
 - Refractive index Hexanol has a higher refractive index

(2 marks).

- (c) (i) Esterification accept condensation ✓ (1 mark)
 - (ii) Chloroethane / CH₃ CH₂ Cl / C₂H₅Cl ✓ (1 mark)
 - (iii) CH₃ CH₂ONa / C₂H₅ONa ✓ (1 mark)
 - (iv) Hydrogen gas

 High temperature (150° 250°C) 2 marks for any 2 conditions

 High pressure (200 250 Atm) Tied to correct reagent

 Nickel catalyst

 Reject unspecified conditions (3 marks)
- 3. (i) (a) Cathode $D^{2+}_{(1)} + 2e^{-} \rightarrow D_{(s)}$ (1 mark)
 - (b) anode $2Br_{(1)} \rightarrow Br_{2(g)} + 2e^{-}$ (1 mark)
 - (ii) Carbon Graphite
 It will not be attacked by /react with Bromine gas /Δ reacts with Bromine vapours
 (2 marks)

(iv) (a) Weigh the cathode before the start of the experiment. Weigh the cathode after the experiment /90 minutes Get the difference in weights \square

(3 marks)

Get the difference in weight

(b)
$$Q = A \times Q = 0.4 \times 90 \times 60$$

(c) $Q = A \times Q = 0.4 \times 90 \times 60$

(d) $Q = A \times Q = 0.4 \times 90 \times 60$

(e) $Q = A \times Q = 0.4 \times 90 \times 60$

(b) $Q = A \times Q = 0.4 \times 90 \times 60$

(c) $Q = A \times Q = 0.4 \times 90 \times 60$

(d) $Q = A \times Q = 0.4 \times 90 \times 60$

(e) $Q = A \times Q = 0.4 \times 90 \times 60$

(e) $Q = A \times Q = 0.4 \times 90 \times 60$

(f) $Q = A \times Q = 0.4 \times 90 \times 60$

(g) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 60$

(h) $Q = A \times Q = 0.4 \times 90 \times 90$

(h) $Q = A \times Q = 0.4 \times 90 \times 90$

(h) $Q = A \times Q = 0.4 \times 90 \times 90$

(h) $Q = Q \times Q = 0.4 \times 90 \times 90$

(h) $Q = Q \times Q = 0.4 \times 90 \times 90$

(h) $Q = Q \times Q = 0.4 \times 90 \times 90$

(h) $Q = Q \times Q = 0.4 \times 90 \times 90$

(h) $Q = Q \times Q = 0.4 \times 90 \times 90$

(h) $Q = Q \times Q = 0.4 \times 90 \times 90$

(h) $Q = Q \times Q = 0.4 \times 90 \times 90$

(h) $Q = Q \times Q = 0.4 \times 90 \times 90$

(h

RAM =
$$\frac{\sqrt{\frac{1}{2}}}{2.31 \times 96500} \sqrt{\frac{1}{2}}$$
$$= 206.4 \sqrt{\frac{1}{2}}$$

$$2.31 = \frac{2160 \times RAM}{2 \times 96500} \checkmark \frac{1}{2}$$

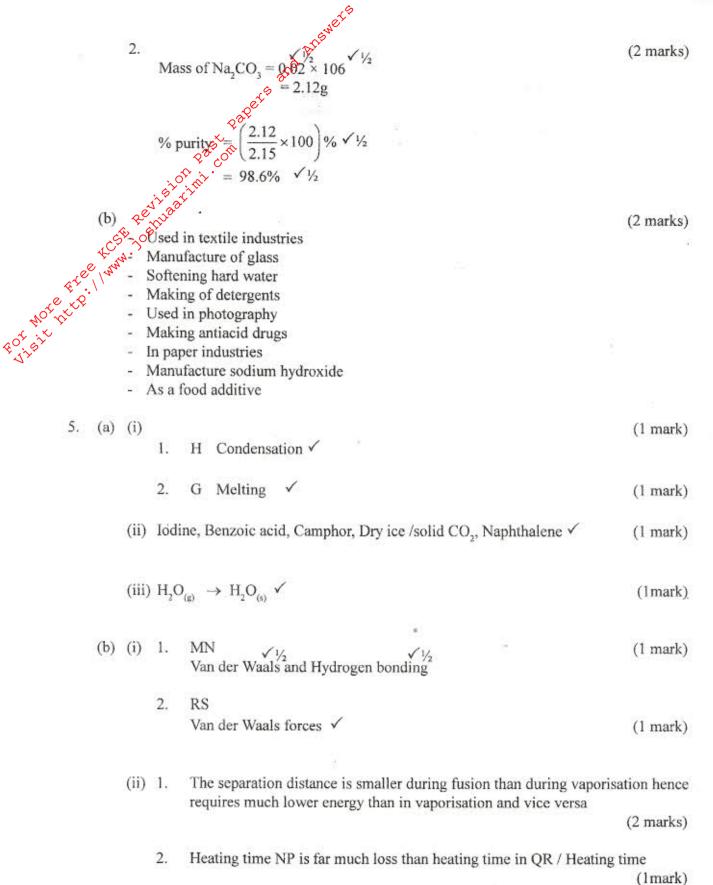
(a) (i) Channel /pump sea water into shallow ponds. Evaporation of water occur at the ponds. Sodium Chloride crystallises out ✓ (2 marks)

(ii) 1.
$$NH_{3(g)} + CO_{2(g)} + H_2O_{(i)} \rightarrow NH_4HCO_{3(aq)} \checkmark$$
 (1 mark)

2.
$$NH_4HCO_{3(aq)} + NaCl_{(aq)} \rightarrow NaHCO_{2(s)} + NH_4Cl_{(aq)} \checkmark$$
 (1 mark)

- (iii) 1. Process I (2 marks) Filtration <
 - 2. Process II Heating ✓

(iv) 1.
$$Na_{2}CO_{3(s)} + H_{2}SO_{4(aq)} \rightarrow Na_{2}SO_{4(aq)} + CO_{2(g)} + H_{2}O_{(l)} \checkmark$$


$$Moles of H_{2}SO_{4} = \frac{40 \times 0.5}{1000} \checkmark \frac{1}{2}$$

$$= 0.02$$
(2 marks)

Moles of Na_2CO_3 = Moles of H_2SO_4 = 0.02 $\checkmark \frac{1}{2}$

Mass of
$$Na_2CO_3 = 0.02 \times 106$$

% age purity =
$$\left(\frac{2.12}{2.15} \times 100\right)$$
% \checkmark
= 98.6%

262

- (c) (i) Hydrogen burns to produce steam which is a non-pollutant /does not cause pollution to the enviconment
 - Hydrogen has a high energy content hence very small amount produce alot of heat /
 - Hydrogen in renewable hence cannot be exhausted /used completely (3 marks)
 - (ii) It can easily explode when burning /highly flammable unlike fossil fuels
 - High cost of production unlike the fossils /fuels

(1 mark)

(2 marks)

40	2 8			4.5	220 00
E.M.	Ion	Number of	Number of	Mass	Electron
in the	L SCHOOL S	protons	neutrons	number	arrangement

Ion	Number of protons	Number of neutrons	Mass number	Electron arrangement
W	17 🗸 1/2	20	37 √ 1/2	2.8.8
X ⁴⁺	14	14 √1/2	28	2.8 √1/2

(b) (i) Sodium burns with a yellow flame and white yellow powder /solid is formed. While copper burns with a green blue flame and black powder /solid is formed 1/2

(2 marks)

- (ii) Sodium darts on the surface of water /rapid effervescence /solution becomes pink immediately
 - Magnesium sinks in water /slow effervescence /solution becomes pink gradually (any 2 correct comparion 0; or 2 marks)
- (c) Magnesium ✓ It has a higher nuclear charge which pulls outer electrons more strongly ✓. (2 marks)

(d) (i)
$$\frac{230}{92}$$
 U It is the most abundant \checkmark (1 mark)

(iii) $\begin{array}{c} 235 \\ 92 \end{array} U \longrightarrow \begin{array}{c} 239 \\ 90 \end{array} Th + \begin{array}{c} 4 \\ 2 \end{array} He \end{array}$ (1 mark)

- (iv) Control mickness of paper√ (1 mark)
- 7. (a) Coke /Coal /Charcoal /Carbon (1 mark)
- $e^{e\left(b_{2}^{c} c_{(s)}^{c} + CO_{2(g)}^{c}\right)} \rightarrow 2CO_{2(g)}^{c}$ (1 mark)
 - (c) The reaction between coke /coal and the hot air is highly exothermic (2 marks)
 - (d) Slag is immiscible with molten iron ✓ (1 mark)
 - (e) Nitrogen (IV) Oxide gas forms acid rain which causes metallic materials and destroys vegetation in the environment √
 - Nitrogen (IV) Oxide is poisonous causes Bronchitis /corrosion of upper respiratory tract /nausea /coughing / irritation of eyes and skin/ (2 marks)
 - (f) (i) By passing /Blowing oxygen into molten iron which converts carbon into Carbon(IV)Oxide√ (2 marks)
 - (ii) To increase the tensile strength /making the iron /less brittle /making it more malleable /making it more ductile ✓ * (1 mark)