(c) The diagram below shows a set up that was used to electrolyse aqueous magnesium sulphate.

- On the diagram above, using an arrow, show the direction of flow of electrons. (i) (1 mark)
- Identify the syringe in which hydrogen gas would be collected. Explain. (ii) (1 mark)
- (d) Explain why the concentration of magnesium sulphate was found to have increased at the end of the experiment. (2 marks)

	(e)	During the electrolysis, a current of 0.72A was passed through the electrolyte for 15 minutes. Calculate the volume of gas produced at the anode. (1 Faraday = 96 500 coulombs; molar gas volume is 24000 cm ³ at room temperature). (4 marks)
		· · · · · · · · · · · · · · · · · · ·
		*
1	(-)	
4.	(a)	In an experiment to determine the molar heat of reaction when magnesium displaces copper, 0.15g of magnesium powder were added to 25.0cm³ of 2.0M copper (II) chloride solution. The temperature of copper (II) chloride solution was 25°C, while that of the mixture was 43°C. (i) Other than increase in temperature, state and explain the observations which were made during the reaction. (3 marks)
	e with	NAME OF THE PARTY
[∠] ,	8.	 Other than increase in temperature, state and explain the observations which were made during the reaction. (3 marks)
× ×		
10		······································
		(ii) Calculate the heat change during the reaction (Specific heat capacity of the solution = 4.2jg⁻¹K⁻¹ and the density of the solution = 1g/cm³). (2 marks)
		(iii) Determine the molar heat of displacement of copper by magnesium. (Mg = 24.0). (2 marks)
		(iv) Write the ionic equation for the reaction. (1 mark)
		(v) Sketch an energy level diagram for the reaction. (2 marks)
	(b)	Use the reduction potentials given below to explain why a solution containing copper ions should not be stored in a container made of zinc.
		$Zn_{(aq)}^{2+} + 2e \rightarrow Zn_{(s)};$ $E^{\theta} = -0.76V$
		$Cu_{(aq)}^{2+} + 2e \rightarrow Cu_{(s)}; E^{\theta} = +0.34V$ (2 marks)

3,	(a)	Distinguish between isotopes and allotropes.	(2 marks
		232 ^{ex}	
	(b)	.~	estions that
	o é	Follow. (The letters are not the actual symbols of the elements).	
4	C. 24		
e x8.	n'	A B	+
**************************************		The chart below is part of the periodic table. Study it and answer the que to the chart below is part of the periodic table. Study it and answer the que to the chart below. (The letters are not the actual symbols of the elements).	E
		26	
		 Select the element in period three which has the shortest atomic ra a reason for your answer. 	adius. Giv (2 marks
		(ii) Element F has the electronic structure, 2.8.18.4. On the chart above indicate the position of element F.	ve, (1 mark)
		(iii) State one use of the elements of which E is a member.	(1 mark)
		(iv) Write an equation to show the action of heat on the nitrate of elements	ent C. (1 mark)
	(c)	When 3 litres of chlorine gas were completely reacted with element D, 11 the product were formed. Determine the relative atomic mass of element	1.875g of D .
			(3 marks)

 (a) The diagram below shows some processes that take place during the industrial manufacture of sulphuric acid.

(i)	Write the equation for the reaction in which sulphur dioxide gas is produced.	
	(1 mark)	

(ii)	Why is it necessary to keep the gases pure and dry?	(1 mark)
	1 120 120 120 120 120 120 120 120 120 12	
(iii)	Describe the process that takes place in chamber G.	(1 mark)

(111)	Describe the process that takes place in chames.	(1)
(iv)	Name the gases that escape into the environment:	(1 mark)

(v)	State and explain the harmful effect on the environment of one of the ga				
1000	named in (iv) above.	(1 mark)			
	(i).				

(vi)	Give one reason why it is necessary to use a	pressure of 2-3 atmospheres
	and not more.	(1 mark

.....

	(b)	(i)		nplete the table below to show the coentrated sulphuric acid is added to		(2 marks)
			3		Observation	
			0 K	n filings	Observation	-
		, o ^o o ,	> Cut	on mings		
		displaying	Cr	ystals of white sugar		
	\$.	atilac		Al .		
	4C28.30	(ii)	Giv	e reasons for the observations made	using:	
FE XP	" I wan		I	iron filings		(1 mark)
noteste.			П	crystals of white sugar.		(1 mark)
		9	**	crystals of white sugar.		(1 mark)
	(c)	Name	one f	ertilizer made from sulphuric acid.		(1 mark)
	(d)			eason why BaSO ₄ (A pigment made making paint for cars.	from sulphuric acid) wou	
		Suitab	ic iii i	making paint for cars.		(1 mark)

				•		
5.	(a)	What	name	is given to a compound that contain	ns carbon and hydrogen on	
		2007234420				(1/2 mark)
		1,200				
	(b)	Hexan	e is a	compound containing carbon and h	ydrogen.	
		(i)	Wha	t method is used to obtain hexane f	rom crude oil?	(1 mark)
		(ii)	State	one use of hexane.		(1 mark)

Study the flow chart below and answer the questions that follow. Ca(OH), Step 3 L + H₂0 1 mole HCI H Step 2 Gas J R 1 mole H₂ Step 4 Ni, H₂ 150°C H₂0, catalyst CH₄CH₃ C, H, Step 6 Step 5 Identify reagent L. (i) (1 mark) Name the catalyst used in Step 5. (ii) (iii) Draw the structural formula of gas J. (iv) What name is given to the process that takes place in step 5? (v) State: I one use of product R (I mark) a commercial application of the process which takes place in step 6 II Write the equation for the reaction between aqueous sodium hydroxide and a: (d) (i) aqueous ethanoic acid. Explain why the reaction between 1g of sodium carbonate and 2M (ii) hydrochloric acid is faster than the reaction between 1g of sodium carbonate and 2M ethanoic acid. (2 marks)

180

The extraction of iron from its ores takes place in the blast furnace. Below is a simplified diagram of a blast furnace. Study it and answer the questions that follow.

(a) Name:

	(1)	one of the substances in the slag	(1 mark)
	(ii)	another iron ore material used in the blast furnace	(1 mark)
	42	and the first that the transfer in the transfe	(1 mark)
	(iii)	one gas which is recycled.	(1 mark)
(b)	Describe	e the processes which lead to the formation of iron in the bl	ast furnace.
			(3 marks)

(c)	State the	e purpose of limestone in the blast furnace.	(1 mark)

			31

(d) Give a reason why the melting point of the iron obtained from the blast furnace is 1200°C while that of pure iron is 1535°C. (1 mark)

(e) State two uses of steel. (2 marks)

7. This table below shows the volumes of nitrogen dioxide gas produced when different volumes of 1M nitric acid were each reacted with 2.07g of lead at room temperature.

Volume of 1M nitric acid (cm ³)	Volume of nitrogen dioxide gas (cm³)
5	60
15	180
25	300
35	420
45	480
55	480

(a)	Give a reason why nitric acid is not used to prepare hydrogen gas.	(1 mark)
(b)	Explain how the rate of the reaction between lead and nitric acid would if the temperature of the reaction mixture was raised.	(2 marks)

On the grid provided below, plot a graph of the volume of the gas produced (vertical (c) axis) against volume of acid.

(ii) 1M nitric acid which would react completely with 2.07g of lead. (1 mark)

	(i)	the volume of IM nitric acid that would react comple	etely with one mole of
	4.01	lead (Pb = 207)	(2 marks
te free land	Ó	2 a con	2,440,750, 19, 24, 21, 24, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
,	service	the volume of nitrogen dioxide gas produced when of	one male of lead secrets
4C\$	7 S	with excess IM nitric acid at room temperature.	(1 mark)
exe. In			
VIC.			
(f)	Calcu	late the number of moles of:	
	(i)	IM nitric acid that reacted with one mole of lead	(1 mark)
		Λ	
	725		
	(ii)	nitrogen dioxide produced when one mole of lead w nitric acid. (Molar gas volume is 24000 cm ³).	(1 mark)
		000 10 000 000 000 000 100 100 100 100	
(g)		g the answers obtained in f(i) and (ii) above, write the een lead and nitric acid given that one mole of lead nit	
		r were also produced.	(1 mark)